Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria -- Effective insecticide-repellent synergy against mosquito vectors

18.07.2007
The mosquitoes responsible for malaria transmission to humans belong to the Anopheles genus. One of the best known and most extensively studied is Anopheles gambiae, Africa’s principal malaria vector.

The protection recommended by the World Health Organization for people at risk from this devastating disease is the use of mosquito nets impregnated with pyrethroids, of low toxicity for mammals and highly active against mosquitoes. Unfortunately, excessive and inappropriate use of this family of insecticide, particularly by spraying, has induced a disturbing rise in the number of resistant individuals in the Anopheles populations. The mosquito nets treated with pyrethroids can therefore lose their effectiveness. It is therefore essential to devise new control strategies against these malaria vectors that are resistant to these insecticides.

IRD researchers and their partners (1) obtained encouraging results by combining a non-pyrethroid insecticide, propoxur, and a repellent, N,N-diethyl toluamide (DEET). They based their investigations on previous work which had revealed a strong synergy between the two components. A combination of the two had proved to be much more effective than the straightforward addition of their respective properties. Mosquito nets soaked with this mixture had a lethal power and irritant effect that inhibited the mosquitoes from biting. Moreover, the mosquitoes are hit by a powerful paralysing action, known as the “knockdown” effect (3), on contact with the mixture. The mortality rates determined were satisfactory, in that they equalled those obtained by using deltamethrin, a commonly-used synthetic pyrethroid, highly effective against mosquitoes.

The researchers tested two mixtures composed of a non-pyrethroid insecticide of the organophosphate family, combined with either a standard repellent, DEET, or with a new-generation synthetic repellent. Both of these mixtures show a strong synergy in the resulting lethal and paralysing effects on the mosquitoes. However, only the association between the insecticide and the standard repellent produced a synergistic effect that inhibited the mosquito from taking its blood feed. A synergistic effect was also observed with regard to the treatment’s residual efficacy which is several months longer than that of either agent applied alone. The advantage of the synergistic property of these combinations is enhanced by the fact that it significantly reduced the necessary effective doses against the mosquitoes (about 6 times that of the insecticide applied alone), to attain an efficacy equivalent to that of deltamethrin.

The nets treated with the two mixtures in the laboratory were subsequently tested in field trials, in the rice-growing area 40 km North of Bobo-Dioulasso, in Burkina Faso. This area has the specificity of harbouring two different forms of Anopheles gambiae. The first appears in May and June in the rice-fields. It shows no resistance to pyrethroids. The second emerges in September and October in puddles left by monsoon rains. These do show resistance to these insecticides. As expected, the usual pyrethroid-treated nets turned out to be effective only against non-resistant mosquitoes of the first population. Conversely, the nets pre-soaked with non-pyrethroid–repellent combinations proved excellent protection for the people of the local villages, whatever the population of mosquitoes present. Nevertheless, their residual efficacy (about 15 days) in real conditions did not match the researchers’ expectations. The team consequently envisage working in conjunction with a company able to devise a system for encapsulating the mixture to prolong the residual life of treated mosquito nets.

The efficacy of these mixtures between organophosphates and repellents therefore opens up a new pathway towards controlling pyrethroid-resistant malaria vectors. In the long term, the researchers plan to test their method on mosquitoes resistant to two other types of insecticide utilized against malaria transmission: organophosphates and carbamates.

Gregory Flechet | EurekAlert!
Further information:
http://www.ird.fr

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>