Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CRESIB coordinates an international consortium to fight malaria caused by Plasmodium vivax

18.07.2007
The CRESIB has today presented the research programme on malaria by Plasmodium vivax, a parasite causing over 70 million yearly cases of malaria in the world. This new programme will be developed in coordination with the leading international centres and researchers on P.vivax.

The aim of this study is to contribute to a better understanding of malaria by P. vivax and to support and accelerate the development of new control tools, with a special focus in vaccines. This fact will promote the creation and development of a research line on P. vivax in CRESIB under the direction of Dr. Hernando A. del Portillo, one of the few specialists in molecular biology and vaccine development against this parasite. The number of CRESIB labs will be increased, with an enlargement and restoration of current facilities to meet the needs of the centre.

Malaria is an infectious disease which can be caused by four species of the Plasmodium parasite: P. falciparum, P. vivax, P. malariae and P. ovale. P. falciparum and P. vivax are the most prevalent, the first being more virulent and responsible of most of the severe morbidity and mortality. Nevertheless, during the last years, there has been a growing interest in malaria by P. vivax, which, as well as causing millions of malaria cases every year, it also generates a high social and economic cost for endemic countries. It is estimated that about 2,600 million people live in risk zones for P. vivax: central and south-America, Asia, Middle East and occidental Pacific. Clinical and pathogen presentation of P. vivax is not well understood. Despite the traditional belief that clinical malaria caused by this species of the parasite is mild, there are evidences suggesting that it can cause severe clinical patterns and even death of patients.

The paradox is that even though malaria by P. vivax has large global disease burden, this is a poorly studied disease, which has been long forgotten. Consequently, this new research programme has a large importance, and an estimated initial duration of 4 years.

This is the reason why CRESIB, through DR. Hernando A. del Portillo, specialist in molecular biology and vaccine development against Plasmodium vivax, gives plenty of importance to the development of new control tools for this type of malaria.

In the field of malaria by P. vivax, there has been until now a lack of initiatives to promote the global effort in the research on this disease. With the experience of the CRESIB group in malaria and of the Clínic Foundation for Biomedical Research (FCRB, Fundació Clínic per a la Recerca Biomèdica) in the management and coordination of projects of international research, an international consortium of research in P. vivax will be created and promoted. This consortium will be constituted by leading malaria research centres, and will be coordinated from Barcelona.

Research centres collaborating in this project, mostly placed in malaria endemic areas by Plasmodium vivax, are: Papua New Guinea Institute of Medical Research, located in Papua New Guinea; the International Centre for Genetic Engineering and Biotechnology, located in New Delhi (India), the Tropical Medicine Foundation of Amazonas, in Manaus (Brazil) and the International Vaccine Centre, located in Cali (Colombia).

About CRESIB:
Research on poverty-related diseases is one of our main tools to try to break the vicious circle between disease and poverty and to have an impact on the development of low-income countries. It is in this sense that the CRESIB has been created in Catalonia, an institute born from the scientific support of the International Health Centre of Hospital Clínic and founded by the Catalan Government through the Department of Health and the Department of Innovation, Universities and Enterprises; the Universitat de Barcelona(UB); the Hospital Clínic de Barcelona; and the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) with the objective to conduct excellence research in international health and to contribute to the global effort in the fight against poverty-related diseases.

CRESIB has a scientific programme including research on diseases causing an important part of the morbidity and mortality in low-income countries, specially malaria, acute respiratory infections, diarrhoeas, tuberculosis and AIDS. Furthermore, CRESIB sets its sights on promoting research related to other aspects of international health, such as emergent, reemergent and immunopreventable diseases, health, immigration and climate and health. Research conducted by CRESIB researchers is currently developed in the facilities located in the Campus of the Faculty of Medicine of the Universitat de Barcelona-Hospital Clínic.

Department of Communication and External Relations of the IDIBAPS - Hospital Clínic of Barcelona

For further information, please contact us at +34 93 227 57 00
Marc de Semir/Gemma Moya

Marc de Semir | EurekAlert!
Further information:
http://www.cresib.cat
http://www.ub.es

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>