Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metabolic syndrome -- don't blame the belly fat

18.07.2007
Abdominal fat, the spare tire that many of us carry, has long been implicated as a primary suspect in causing the metabolic syndrome, a cluster of conditions that includes the most dangerous heart attack risk factors: prediabetes, diabetes, high blood pressure, and changes in cholesterol.

But with the help of powerful new imaging technologies, a team of Howard Hughes Medical Institute (HHMI) researchers at Yale University School of Medicine has found that insulin resistance in skeletal muscle leads to alterations in energy storage that set the stage for the metabolic syndrome.

Insulin resistance is a condition in which the body's cells become resistant to insulin, a hormone secreted by the pancreas that plays an essential role in regulating the carbohydrates, lipids, and proteins obtained from food.

The new study, published July 16, 2007, in the Proceedings of the National Academy of Sciences (PNAS), demonstrates that insulin resistance in skeletal muscle -- caused by decreased ability of muscle to make glycogen, the stored form of carbohydrate from food energy -- can promote an elevated pattern of lipids or fats in the bloodstream that underpins the metabolic syndrome.

The study was led by HHMI investigator Gerald I. Shulman and Kitt Falk Petersen, both of the Yale University School of Medicine. Coauthors of the paper were from Yale and Harvard Medical School.

The metabolic syndrome is a very common metabolic abnormality and the prevalence is growing. However, the underlying factors that cause it are poorly understood.” The syndrome afflicts more than 50 million Americans and roughly half of all Americans are predisposed to it, making it one of the nation's most serious human health issues.

To begin to shed light on the earliest molecular events that lead to the metabolic syndrome, Shulman and his colleagues used powerful new magnetic resonance imaging techniques to observe how nutrients are channeled in the body in both insulin resistant and insulin sensitive human subjects.

The subjects for the study were all young, lean, non-smoking, healthy individuals who were sedentary and matched for physical activity. Aside from insulin resistance in one cohort, these volunteers had none of the other confounding factors typically associated with obesity and type 2 diabetes, which have been thought to play a key role in the pathogenesis of the metabolic syndrome.

"Our hypothesis was that the metabolic syndrome is really a problem with how we store energy from food,” Shulman explained. "The idea is that insulin resistance in muscle changes the pattern of energy storage."

After providing the study's subjects with two meals high in carbohydrates, Shulman and his colleagues turned to magnetic resonance spectroscopy to measure the production of liver and muscle triglyceride, the storage form of fat, and of glycogen, the storage form of carbohydrate. "What we found is that (insulin) sensitive individuals took the energy from carbohydrate in the meals and stored it away as glycogen in both liver and muscle," said Shulman.

In the insulin resistant subjects, the energy obtained from their carbohydrate rich meals was rerouted to liver triglyceride production, elevating triglycerides in the blood by as much as 60 percent and lowering HDL cholesterol (the “good cholesterol”) by 20 percent. "In contrast to the young, lean, insulin-sensitive subjects, who stored most of their ingested energy as liver and muscle glycogen, the young, lean, insulin-resistant subjects had a marked defect in muscle glycogen synthesis and diverted much more of their ingested carbohydrate into liver fat production,” Shulman and his colleagues reported.

"What we see," he noted, "is alterations in patterns of energy storage. An additional key point is that the insulin resistance, in these young, lean, insulin resistant individuals, was independent of abdominal obesity and circulating plasma adipocytokines, suggesting that these abnormalities develop later in the development of the metabolic syndrome."

The new findings promise to help untangle the early molecular events of a syndrome at the root of one of the world's most significant health issues. “Knowing how insulin resistance alters energy storage before it leads to more serious problems can help those susceptible prevent the onset of the metabolic syndrome,” Shulman said.

Another key observation was that skeletal muscle insulin resistance precedes the development of insulin resistance in liver cells, and that fat production in the liver is increased. “These findings also have important implications for understanding the pathogenesis of nonalcoholic fatty liver disease, one of the most prevalent liver diseases in both adults and children” Shulman said.

The good news, according to Shulman, is that insulin resistance in skeletal muscle can be countered through a simple intervention: exercise.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>