Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Penn researchers identify new combination therapy that promotes cancer cell death

Researchers at the University of Pennsylvania School of Medicine identified a combination therapy as a way to sensitize resistant human cancer cells to a treatment currently being tested in clinical trials They propose that the therapy may help to selectively eliminate cancer cells while leaving healthy cells intact, providing a cancer treatment with fewer side effects. The Penn team reports their findings in the July issue of Cancer Cell.

To test the ability of the combined therapy in treating cancerous tumors, senior author Wafik S. El-Deiry, MD, PhD, and colleagues administered TRAIL, a tumor necrosis factor, and sorafenib, an inhibitor currently used to treat renal cancer, to mice with colon carcinomas. The sorafenib and TRAIL therapy reduced the size of tumors in mice with few side effects, demonstrating the potential effectiveness of the combined treatment on human colon cancers.

"Cancer cells will do whatever it takes to survive in harsh environments," explains El-Deiry, Professor of Medicine, Genetics, and Pharmacology. To kill hearty cancer cells, El-Deiry and other scientists are working on ways to alter them so they become more susceptible to cell death.

In ongoing clinical trials, doctors are giving cancer patients extra doses of TRAIL (TNF-a-related apoptosis-inducing ligand), a molecule naturally produced by the body's immune system that promotes cell death, to help kill off cancer cells. While TRAIL-based therapy is promising, over 50 percent of all cancer cells show resistance to TRAIL. To create a more potent form of targeted cancer therapy, El-Deiry's research team began searching for ways to reverse TRAIL resistance in cancer cells.

Recently, El-Deiry's research group found that TRAIL-resistant cells avoid death by producing 'survival' proteins called cIAP2 and Mcl-1. The oncogene c-Myc in part hampers a cancer cell's survival strategy by blocking the function of an intermediate protein that oversees cIAP2 and Mcl-1 production. Without these survival proteins, cancer cells are unable to resist the death initiated by TRAIL.

In search of drugs that perform a similar cancer-cell death function to c-Myc, El-Deiry's lab turned to sorafenib, which is also being considered for the treatment of a variety of cancers. Like c-Myc, the researchers found that sorafenib blocked the intermediate and survival proteins when combined with TRAIL, causing TRAIL-resistant colon and lung cancer cell lines to die.

"Our findings are exciting because TRAIL in combination with sorafenib appears to be much less toxic than current chemotherapy drugs," explains El-Deiry. "Plus, sorafenib is already available in a pill form."¨

While enthusiastic about his recent findings, El-Deiry notes sorafenib may be working to increase cell sensitivity to TRAIL through more biochemical pathways than the intermediate alone.

"The ability of sorafenib to work through multiple pathways may be beneficial to cancer treatments because cancer may be altering multiple targets," says El-Deiry.

In the future, El-Deiry plans to explore additional pathways sorafenib may be working through to increase TRAIL sensitivity and to compare the effectiveness of other drugs.

"In addition to proposing a combination therapy that's rational, non-toxic, and effective in preclinical trials, our findings open up new avenues of molecular exploration for designing targeted anti-cancer therapies," said El-Deiry.

Karen Kreeger | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>