Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers identify new combination therapy that promotes cancer cell death

17.07.2007
Researchers at the University of Pennsylvania School of Medicine identified a combination therapy as a way to sensitize resistant human cancer cells to a treatment currently being tested in clinical trials They propose that the therapy may help to selectively eliminate cancer cells while leaving healthy cells intact, providing a cancer treatment with fewer side effects. The Penn team reports their findings in the July issue of Cancer Cell.

To test the ability of the combined therapy in treating cancerous tumors, senior author Wafik S. El-Deiry, MD, PhD, and colleagues administered TRAIL, a tumor necrosis factor, and sorafenib, an inhibitor currently used to treat renal cancer, to mice with colon carcinomas. The sorafenib and TRAIL therapy reduced the size of tumors in mice with few side effects, demonstrating the potential effectiveness of the combined treatment on human colon cancers.

"Cancer cells will do whatever it takes to survive in harsh environments," explains El-Deiry, Professor of Medicine, Genetics, and Pharmacology. To kill hearty cancer cells, El-Deiry and other scientists are working on ways to alter them so they become more susceptible to cell death.

In ongoing clinical trials, doctors are giving cancer patients extra doses of TRAIL (TNF-a-related apoptosis-inducing ligand), a molecule naturally produced by the body's immune system that promotes cell death, to help kill off cancer cells. While TRAIL-based therapy is promising, over 50 percent of all cancer cells show resistance to TRAIL. To create a more potent form of targeted cancer therapy, El-Deiry's research team began searching for ways to reverse TRAIL resistance in cancer cells.

Recently, El-Deiry's research group found that TRAIL-resistant cells avoid death by producing 'survival' proteins called cIAP2 and Mcl-1. The oncogene c-Myc in part hampers a cancer cell's survival strategy by blocking the function of an intermediate protein that oversees cIAP2 and Mcl-1 production. Without these survival proteins, cancer cells are unable to resist the death initiated by TRAIL.

In search of drugs that perform a similar cancer-cell death function to c-Myc, El-Deiry's lab turned to sorafenib, which is also being considered for the treatment of a variety of cancers. Like c-Myc, the researchers found that sorafenib blocked the intermediate and survival proteins when combined with TRAIL, causing TRAIL-resistant colon and lung cancer cell lines to die.

"Our findings are exciting because TRAIL in combination with sorafenib appears to be much less toxic than current chemotherapy drugs," explains El-Deiry. "Plus, sorafenib is already available in a pill form."¨

While enthusiastic about his recent findings, El-Deiry notes sorafenib may be working to increase cell sensitivity to TRAIL through more biochemical pathways than the intermediate alone.

"The ability of sorafenib to work through multiple pathways may be beneficial to cancer treatments because cancer may be altering multiple targets," says El-Deiry.

In the future, El-Deiry plans to explore additional pathways sorafenib may be working through to increase TRAIL sensitivity and to compare the effectiveness of other drugs.

"In addition to proposing a combination therapy that's rational, non-toxic, and effective in preclinical trials, our findings open up new avenues of molecular exploration for designing targeted anti-cancer therapies," said El-Deiry.

Karen Kreeger | EurekAlert!
Further information:
http://www.pennhealth.com/news

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>