Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First mouse lung transplants lay groundwork for new ways to prevent transplant rejection in humans

13.07.2007
Lung transplants have been performed successfully for more than 20 years in humans but never before in mice – until now. Surgeons at Washington University School of Medicine in St. Louis have developed the first mouse model of lung transplantation, and they’re hoping it will help explain why the success of the procedure in humans lags far behind other solid organ transplants.

Ultimately, the mouse model could pave the way for developing new therapies to prevent lung transplant rejection – a major problem that limits the long-term success of the procedure. The mouse model is described in the June issue of the American Journal of Transplantation.

Five years after lung transplant surgery, only about 45 percent of patients are still alive, according to the U.S. Organ and Procurement and Transplantation Network. This compares with five-year survival rates of about 70 percent for heart and liver transplants and about 80 percent for kidney transplants. About 1,000 lung transplants are performed each year in the United States.

“The high failure rate of lung transplants is a huge problem,” says lung transplant surgeon Daniel Kreisel, M.D., Ph.D., an assistant professor of surgery and a lead investigator of the research. “Unlike other organs, lungs are constantly exposed to bacteria and viruses in the environment, and we think this exposure increases the risk of chronic rejection and the eventual failure of the organ. This is why the mouse model is so critical. It will allow us to understand the molecular mechanisms that control lung transplant rejection.”

Lung transplants are the only treatment option for end-stage lung disease, including chronic obstructive pulmonary disease (COPD), cystic fibrosis, pulmonary fibrosis and certain congenital lung defects. Following a transplant, patients must take drugs for the rest of their lives that suppress the immune system and prevent it from attacking the new lung. This leaves them vulnerable to upper respiratory infections, which can quickly develop into pneumonia.

Kreisel and others suspect that these illnesses alter the immune response and increase inflammation, which eventually lead to chronic rejection. They note that mainstay immunosuppressive drugs simply are not effective at preventing chronic rejection for lung transplants, and they hope the mouse model will reveal why.

“The current hypothesis is that lung transplant rejection is linked to chronic inflammation from transient viral or bacterial infections, and this can be aggravated by the fact that transplant recipients are taking immunosuppressive drugs,” Kreisel says.

Mouse models for heart, liver and kidney transplants have existed for years, but developing a similar model for lung transplantation has proved to be a real technical challenge. Mouse lungs measure less than an inch in length and the pulmonary vein and artery, which carry blood to and from the heart, are as thin as human hair.

Mikio Okazaki, M.D., a postdoctoral fellow, adapted the lung transplantation technique used in rats to the mice. He uses synthetic cuffs to join the donor vessels with those of the recipient. Okazaki has successfully performed several hundred lung transplants in the mice, and the team’s analysis indicates the model simulates the same immune response that occurs in humans following lung transplantation.

Before Okazaki and his Washington University colleagues developed the mouse model, researchers had been studying lung transplantation using a nonphysiological mouse model in which a small section of trachea from one mouse was transplanted under the skin of another. Although it was simple to create, the model did not accurately mimic lung transplantation. “It was a very artificial model that had little to do with reality, Okazaki says. “We think the new model will be far better for studying the underlying immune mechanisms that lead to rejection.”

The new mouse lung transplant model has an advantage over those in rats and larger animals because the genetics of mice are well documented and their genes are easier to manipulate. “With the mice, we can selectively delete genes to study their function in the transplanted lung or in the recipient, which we’ve not been able to do effectively in other animal models,” says Andrew Gelman, Ph.D., an assistant professor of surgery, who is a lead investigator of this research. “By understanding the genes that control lung graft survival, researchers will be able to better guide the development of therapies to counteract chronic rejection.”

The mouse model also will allow the researchers to investigate how other transplant-related complications affect the long-term success of the procedure. Many lung transplant patients experience gastric reflux, and doctors suspect this acid exposure damages the lining of the lung and further exposes the organ to pathogens. The mouse model will let researchers evaluate whether gastric reflux increases the risk of lung rejection.

Additionally, the time between surgery to harvest a donor lung and transplant it into a patient is widely suspected to affect its overall function after transplant surgery. The mouse model will help pinpoint the inflammation that underlies damage to the organ when it can’t be transplanted quickly and may lead to ways to prevent such injury.

Based on mouse models of other solid organ transplants, researchers have learned that different groups of immune cells contribute to rejection in different organs. “Rejection of the lung differs from rejection of the heart in terms of the cells that participate in that rejection,” says Alexander Sasha Krupnick, M.D., assistant professor of surgery. “Every organ is different. What we’ve learned about rejection of the heart in mice does not apply to lungs. So we are thrilled to finally have an acceptable mouse model of lung transplantation to help us discover ways to increase the success of these transplants in humans.”

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>