Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment model for HIV

13.07.2007
Treatment of HIV patients must balance the need to suppress viral replication against the harmful side effects and significant cost to the patient of antiretroviral therapy.

This tradeoff has led to the development of various drug-sparing HIV-1 treatment strategies, which often results in the emergence of resistant viruses and overall treatment failure. This has prompted an interest in induction–maintenance (IM) treatment strategies, in which brief intensive therapy is used to reduce host viral levels, which is then followed by a simplified and more easily tolerated maintenance regimen.

IM approaches remain an unproven concept in HIV therapy. In a study publishing July 13, 2007 in PLoS Computational Biology, clinical responses to antiretroviral drug therapy are simulated for the first time, and the model is then applied to IM therapy. Marcel Curlin, Shyamala Iyer, and John Mittler, from the University of Washington, find that IM is expected to be successful beyond three years and that six to ten months of induction therapy should achieve durable suppression of HIV and maximize the possibility of eradicating viruses resistant to the maintenance regime. They also find the counter-intuitive result that for induction regimens of limited duration the optimal time to initiate induction therapy may be several days or weeks after the start of regular (maintenance) therapy.

These results are important not simply because they show how this particular, albeit important, therapy strategy may be optimized, but because they illustrate the more general potential for mathematical models to influence therapy decisions. “Our experience has been that clinicians and policy makers are often hesitant to consider, sometimes even hostile towards, mathematical modeling approaches. Instead, they rely on intuition or await the results of expensive, long-term clinical trials”, says Mittler. By presenting a detailed model that makes concrete quantitative predictions and gives some interesting, counter-intuitive qualitative results, this paper may help to change attitudes concerning the value of dynamical modeling approaches.

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030133 (link will go live on July 13th)

CITATION: Curlin ME, Iyer S, Mittler JE (2007) Optimal timing and duration of induction therapy for HIV-1 Infection. PLoS Comput Biol 3(7): e133. doi:10.1371/journal.pcbi.0030133

CONTACT:
John Mittler
Department of Microbiology,
University of Washington,
Seattle,
Washington,
United States of America
jmittler@u.washington.edu

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>