Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New treatment model for HIV

Treatment of HIV patients must balance the need to suppress viral replication against the harmful side effects and significant cost to the patient of antiretroviral therapy.

This tradeoff has led to the development of various drug-sparing HIV-1 treatment strategies, which often results in the emergence of resistant viruses and overall treatment failure. This has prompted an interest in induction–maintenance (IM) treatment strategies, in which brief intensive therapy is used to reduce host viral levels, which is then followed by a simplified and more easily tolerated maintenance regimen.

IM approaches remain an unproven concept in HIV therapy. In a study publishing July 13, 2007 in PLoS Computational Biology, clinical responses to antiretroviral drug therapy are simulated for the first time, and the model is then applied to IM therapy. Marcel Curlin, Shyamala Iyer, and John Mittler, from the University of Washington, find that IM is expected to be successful beyond three years and that six to ten months of induction therapy should achieve durable suppression of HIV and maximize the possibility of eradicating viruses resistant to the maintenance regime. They also find the counter-intuitive result that for induction regimens of limited duration the optimal time to initiate induction therapy may be several days or weeks after the start of regular (maintenance) therapy.

These results are important not simply because they show how this particular, albeit important, therapy strategy may be optimized, but because they illustrate the more general potential for mathematical models to influence therapy decisions. “Our experience has been that clinicians and policy makers are often hesitant to consider, sometimes even hostile towards, mathematical modeling approaches. Instead, they rely on intuition or await the results of expensive, long-term clinical trials”, says Mittler. By presenting a detailed model that makes concrete quantitative predictions and gives some interesting, counter-intuitive qualitative results, this paper may help to change attitudes concerning the value of dynamical modeling approaches.


CITATION: Curlin ME, Iyer S, Mittler JE (2007) Optimal timing and duration of induction therapy for HIV-1 Infection. PLoS Comput Biol 3(7): e133. doi:10.1371/journal.pcbi.0030133

John Mittler
Department of Microbiology,
University of Washington,
United States of America

Andrew Hyde | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>