Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria-resistant mosquitoes battle disease with 'molecular warhead'

09.07.2007
A team led by UT Southwestern Medical Center researchers has discovered why some mosquitoes are resistant to malaria, a finding that may one day help fight a disease that afflicts and kills millions of people.

A team led by UT Southwestern Medical Center researchers has discovered why some mosquitoes are resistant to malaria, a finding that may one day help fight a disease that afflicts and kills millions of people.

The researchers focused on TEP1, a protein in the mosquito’s immune system. When a mosquito is infected with a parasite that causes malaria, a biochemical reaction is triggered that physically transforms TEP1 into an active state capable of grabbing on to the parasite’s surface and targeting it for termination.

In a study appearing online this week in the Proceedings of the National Academy of Sciences, the UT Southwestern group used a method called X-ray crystallography to uncover TEP1’s three-dimensional structure. They found that the genetic differences between mosquitoes that are resistant and those that are susceptible to the parasite mostly manifest in a region of the TEP1 protein dubbed “the warhead,” the portion that grabs the malarial parasite.

“TEP1 is a scout that finds the enemy, in this case malarial parasites, then plants a homing signal on the enemy and calls in the air strike,” said Dr. Richard Baxter, a postdoctoral researcher in biochemistry at UT Southwestern and lead author of the study.

Understanding how some mosquitoes can fend off malaria might someday lead to reducing or even eliminating the mosquito’s capacity to transmit the devastating disease, Dr. Baxter said.

“We have been trying to cure people of malaria for over a century,” said Dr. Baxter, who also is a research associate with the Howard Hughes Medical Institute at UT Southwestern. “Only recently have people started to think about curing mosquitoes of malaria.”

Nobel laureate Dr. Johann Deisenhofer, who is senior author of the study, said, “This finding opened my eyes to the fact that mosquitoes are almost as unhappy about malaria as we are. “They try to get rid of it.” Dr. Johann Deisenhofer is a professor of biochemistry, an HHMI investigator and holder of the Virginia and Edward Linthicum Distinguished Chair in Biomolecular Science. He was awarded the 1988 Nobel Prize in chemistry for using X-ray crystallography to describe the structure of a protein involved in photosynthesis.

Malaria is one of the leading causes of disease and death in the world. About 350 million to 500 million worldwide are infected with malaria, according to the Bill and Melinda Gates Foundation. Each year more than one million die, primarily children in Africa.

About 40 percent of the world’s population lives in areas with mosquitoes that carry malaria. Prevention and treatment have been hampered by cost, the rise of drug-resistant malarial parasites, and the lack of a vaccine.

Malaria is caused by parasites of the genus Plasmodium, which are spread to humans through mosquito bites. A mosquito picks up the parasite via infected human blood. The parasite then embeds itself in the mosquito’s gut wall and reproduces, eventually passing to the salivary glands. The mosquito then infects new people during subsequent bites.

The research group’s French collaborators, using a Plasmodium species that infects rodents, previously determined that the gene for TEP1 occurs in two forms, or alleles. One, called TEP1r, occurs in mosquitoes that are resistant to malarial infection. Another, TEP1s, is found in mosquitoes that are vulnerable to infection.

The TEP1r and TEP1s proteins are 93 percent genetically identical, and the new study, in which TEP1r was structurally analyzed, shows that the differences cluster around the warhead area, Dr. Baxter said. This finding reinforces the theory that the warhead is a key element of the overall immune response to malaria in mosquitoes.

In future studies, the researchers will genetically manipulate the warhead to study its binding properties, Dr. Baxter said. In addition, further research is needed to determine what other elements of the mosquito’s immune system are activated once TEP1 binds to an invader.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu/receivenews
http://www.utsouthwestern.edu/utsw/cda/dept353744/files/392511.html

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

'Memtransistor' brings world closer to brain-like computing

22.02.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>