Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria-resistant mosquitoes battle disease with 'molecular warhead'

09.07.2007
A team led by UT Southwestern Medical Center researchers has discovered why some mosquitoes are resistant to malaria, a finding that may one day help fight a disease that afflicts and kills millions of people.

A team led by UT Southwestern Medical Center researchers has discovered why some mosquitoes are resistant to malaria, a finding that may one day help fight a disease that afflicts and kills millions of people.

The researchers focused on TEP1, a protein in the mosquito’s immune system. When a mosquito is infected with a parasite that causes malaria, a biochemical reaction is triggered that physically transforms TEP1 into an active state capable of grabbing on to the parasite’s surface and targeting it for termination.

In a study appearing online this week in the Proceedings of the National Academy of Sciences, the UT Southwestern group used a method called X-ray crystallography to uncover TEP1’s three-dimensional structure. They found that the genetic differences between mosquitoes that are resistant and those that are susceptible to the parasite mostly manifest in a region of the TEP1 protein dubbed “the warhead,” the portion that grabs the malarial parasite.

“TEP1 is a scout that finds the enemy, in this case malarial parasites, then plants a homing signal on the enemy and calls in the air strike,” said Dr. Richard Baxter, a postdoctoral researcher in biochemistry at UT Southwestern and lead author of the study.

Understanding how some mosquitoes can fend off malaria might someday lead to reducing or even eliminating the mosquito’s capacity to transmit the devastating disease, Dr. Baxter said.

“We have been trying to cure people of malaria for over a century,” said Dr. Baxter, who also is a research associate with the Howard Hughes Medical Institute at UT Southwestern. “Only recently have people started to think about curing mosquitoes of malaria.”

Nobel laureate Dr. Johann Deisenhofer, who is senior author of the study, said, “This finding opened my eyes to the fact that mosquitoes are almost as unhappy about malaria as we are. “They try to get rid of it.” Dr. Johann Deisenhofer is a professor of biochemistry, an HHMI investigator and holder of the Virginia and Edward Linthicum Distinguished Chair in Biomolecular Science. He was awarded the 1988 Nobel Prize in chemistry for using X-ray crystallography to describe the structure of a protein involved in photosynthesis.

Malaria is one of the leading causes of disease and death in the world. About 350 million to 500 million worldwide are infected with malaria, according to the Bill and Melinda Gates Foundation. Each year more than one million die, primarily children in Africa.

About 40 percent of the world’s population lives in areas with mosquitoes that carry malaria. Prevention and treatment have been hampered by cost, the rise of drug-resistant malarial parasites, and the lack of a vaccine.

Malaria is caused by parasites of the genus Plasmodium, which are spread to humans through mosquito bites. A mosquito picks up the parasite via infected human blood. The parasite then embeds itself in the mosquito’s gut wall and reproduces, eventually passing to the salivary glands. The mosquito then infects new people during subsequent bites.

The research group’s French collaborators, using a Plasmodium species that infects rodents, previously determined that the gene for TEP1 occurs in two forms, or alleles. One, called TEP1r, occurs in mosquitoes that are resistant to malarial infection. Another, TEP1s, is found in mosquitoes that are vulnerable to infection.

The TEP1r and TEP1s proteins are 93 percent genetically identical, and the new study, in which TEP1r was structurally analyzed, shows that the differences cluster around the warhead area, Dr. Baxter said. This finding reinforces the theory that the warhead is a key element of the overall immune response to malaria in mosquitoes.

In future studies, the researchers will genetically manipulate the warhead to study its binding properties, Dr. Baxter said. In addition, further research is needed to determine what other elements of the mosquito’s immune system are activated once TEP1 binds to an invader.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu/receivenews
http://www.utsouthwestern.edu/utsw/cda/dept353744/files/392511.html

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>