Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fight against malnutrition in the world population through innovation and a less fragmented approach

06.07.2007
Malnutrition is still the most serious threat to the health of the world population and the most important cause of infant mortality in the world. About one third of the population in developing countries is faced with micronutrient deficiencies, such as vitamin and mineral deficiencies.

Investing in solutions for these can produce many results, but to date the approach has been too fragmented and not sufficiently innovative. This is what Professor Michael Zimmerman propounds in his acceptance of the position of professor occupying an endowed chair in Micronutrients and health in developing countries at Wageningen University in the Netherlands. Unilever sponsors his chair and is partner in his research.

In his inaugural lecture, "Global control of micronutrient deficiencies; divided they stand, united they fall", he argues for an integrated approach to the problem of hunger. This must be effected, in his opinion, by viewing deficiencies of the various micronutrients in a coherent way. There must also be attunement of the various strategies which have been pursued separately up to now. And finally there must be better collaboration between the different organisations – government, business community and science. A combined approach is more effective, he argues.

Innovation

Professor Zimmerman thinks that traditional strategies are not enough, however. In addition, much effort must be invested in innovation. He points here to plant breeding or genetic modification – bio-fortification – to increase vitamin and mineral content and their absorption. Modifying the genes in rice, for example, can increase iron content and at the same time enhance iron absorption in the human body. Zimmerman also sees a great deal of potential in the application of nanotechnology in order to increase the solubility of micronutrients in water and thus lead to their greater absorption by the body. The human body is generally a poor absorber of ferric sulphate but good absorption of this substance can be achieved if the particle size of the substance can be reduced greatly, as Zimmermann has already demonstrated in an animal study.

Zimmerman expects that uniting traditional strategies with innovative new technologies can represent a breakthrough in the control of vitamin and mineral deficiency in foodstuffs.

Fragmentation

Despite the great efforts made, programmes of governments and international organisations directed at separate solutions for such things as deficiencies in vitamin A, iron, iodine or zinc have had relatively little effect: Vitamin A deficiency is still a factor in the death of a million children a year, and iodine deficiency in mothers during pregnancy impairs the mental development of 18 million children a year.

According to Zimmerman, research shows that many of these deficiencies occur concurrently. Iodised salt, for instance, has little effect in areas where there are vitamin A and iron deficiencies. In his view, the best way of preventing various micronutrient deficiencies is a coherent and multi-facetted approach.

The same applies to the strategies for achieving this goal. These will not be particularly effective, in the opinion of Zimmerman, if separate efforts are made at adding vitamins and minerals to food (fortification), or through tablets or drinks in addition to food (supplementation), of through varied nutrition (dietary diversification). Although dietary diversification is the best long-term solution, fortification and supplementation are essential in the shorter term.

Michael Bruce Zimmermann (1958), who possesses both Swiss and American nationalities, studied food sciences at Berkeley, California and obtained his doctorate in medicine cum laude at the Vanderbilt University, Nashville, Tennessee (US). He has been working as lecturer and researcher at the Institute of Food Science and Nutrition at the Swiss Federal Institute of Technology in Zurich (ETH) since 1997.

The chair of Professor Zimmerman and his assistant professor are sponsored by Unilever. This company is also funding three PhD students and six master scholarships, all for students from developing countries. A scientific collaboration between Unilever and Professor Zimmermann's group will also be established. This financial support and scientific collaboration are a result of the ambition to contribute to improved nutrition in developing countries, in particular by reducing micronutrient deficiencies through foods.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>