Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the treatment of Parkinson’s disease possible with a new neurotrophic factor in the future ?

05.07.2007
Parkinson’s disease is a degenerative brain disease characterized by the loss of dopamine neurons in the midbrain-area called Substantia Nigra.

The research group led by professor Mart Saarma, Director of the Institute of Biotechnology, University of Helsinki, has discovered a novel neurotrophic factor CDNF (Conserved Dopamine Neurotrophic Factor). CDNF was shown to protect and even rescue damaged dopamine neurons in an experimental model of Parkinson’s disease in studies performed by the research group of professor Raimo K. Tuominen, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. More importantly, also the function of the neurons was recovered after an experimental lesion of the dopamine neurons in Substantia Nigra.

The findings of this research may be of great importance for the development of new treatment strategies for Parkinson’s disease. The results of this study will be published in “Nature” on July 5th, 2007.

Approximately one percent of people aged over 60 get Parkinson’s disease all over the World. The demographic change with increasing number of elderly people will lead in doubling of the number of Parkinsonian patients also in Finland during 2005 – 2030. Typical symptoms in Parkinson’s disease are those of muscle rigidity, tremor, and slowness of movement. They are a consequence of the degeneration of dopamine nerves projecting from Substantia Nigra to Caudate Putamen (also called Striatum). The clinical symptoms manifest when approximately 70 % of the dopamine nerves have been destroyed. Degeneration of the dopamine nerves progresses slowly, and in time the difficulties in movement becomes a major factor reducing the quality of life of these patients.

Current drug treatment of Parkinson’s disease aims at increasing dopamine concentration and / or activation of dopamine receptors in the brain. Due to the progression of the nerve degeneration the drug therapy gradually becomes less effective. Neurotrophic factors which could slow down or even halt the progression of the degeneration of dopamine nerves have been in the focus as a possible new treatment for Parkinson’s disease. Glial cell- line derived neurotrophic fctor (GDNF) is one example of such a promising growth factor. Indeed, it was shown to have beneficial effects in a clinical trial in Parkinsonian patients suffering from severe symptoms. However, due to adverse effects the clinical trials have been stopped, even though some of the patients would have continued the therapy. Even so, the clinical trials on GDNF gave the proof of concept for the use of neurotrophic factorstreatment of neurodegenerative diseases. Therefore it is very important to search for new growth factors with similar efficacy as GDNF, but with better tolerability.

Conserved dopamine neurotrophic (CDNF) factor discovered and characterized in this study is well conserved in the evolution. It belongs to a CDNF/MANF family of proteins, which is the first evolutionarily conserved family of neurotrophic factors having a representative also in invertebrate animals (MANF = mesencephalic astrocyte derived neurotrophic factor).

In an experimental model of Parkinson’s disease, a neurotoxin 6-OHDA was injected on one side of the brain into the striatum of rats. This toxin causes a progressive degeneration of dopamine nerves similar to that observed in Parkinsons disease. Upon activation of dopamine nerves of the brain by drugs, these animals show a movement disorder, a circling behaviour, which reflects an imbalance of dopamine activity of the brain hemispheres.

A single injection of CDNF six hours before the toxin delivery into the striatum significantly prevented the degeneration of dopamine nerves in the brain and also the turning behavior was normalized. When administered four weeks after the toxin, situation mimicking a progression of the nerve degeneration in patients, injection of CDNF into Striatum was able to prevent the degeneration of dopaminergic neurons and cure the behavioral imbalance.

The results of the present study show that CDNF is a very promising new neurotrophic factor with a significant neuroprotective and neurorestorative effects on dopamine nerves in the brain. It may have significant potential in the treatment of Parkinson’s disease in the future as a neuro protective or even neurorestorative therapy.

Title of the article in “Nature”: Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo

Authors: Päivi Lindholm1, Merja H. Voutilainen2, Juha Laurén1†, Johan Peränen1, Veli-Matti Leppänen1, Jaan-Olle Andressoo1, Maria Lindahl1, Sanna Janhunen2#, Nisse Kalkkinen1, Tõnis Timmusk1,3, Raimo K. Tuominen2 & Mart Saarma1

Ms. Päivi Lindholm, M.Sc., had a central role in the discovery of CDNF and Mrs. Merja H. Vuotilainen (born Kauppinen), M.Sc. performed the studies on experimental model of Parkinson’s disease.

For further information, please contact:

Prof. Mart Saarma (050 5002726)
Prof. Raimo K. Tuominen 050 5548005)
M.Sc. Päivi Lindholm (040 5239884)
M.Sc. Merja H. Voutilainen (050 4002191)

Terttu Nurro | alfa
Further information:
http://www.helsinki.fi

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>