Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Method to prevent hemorrhagic complications of thrombolytic therapy of blood clots is discovered

A novel method to prevent hemorrhagic complications of thrombolytic therapy of blood clots is discovered.

Blood clot dissolution by thrombolytic therapy is an approved, safe and efficaceous therapy of acute ischemic stroke. It is in routine use world-wide, and prevents individuals from stroke-related long-term disability. Many safe therapy forms, however, are often associated with hazards, and therefore indications for therapy must be weighed on an individual basis.

In stroke thrombolysis, it is the risk of perithrombolytic hemorrhage formation and expansive brain edema that are most feared complications, and may preclude from administering the therapy. Even after proper precautions, perithrombolytic hemorrhages occur in 6 to 10 % of treated patients. Therefore, experimental research is needed to clarify the mechanisms leading to these complications.

The now reported study led by Dr. Perttu J. Lindsberg from the Helsinki University Central Hospital investigated thrombolytics-related brain hemorrhage formation in an experimental stroke model in rats. It found that, in addition to the clot lysing effect, the drug used for this purpose, alteplase (recombinant tissue plasminogen activator) also possesses proinflammatory properties and activates and degranulates mast cells, a kind of tissue-based immune cell. On degranulation, mast cells release potent enzymes that cleave proteins (eg, chymase, tryptase, and metalloproteases) in the vessel wall. The result is increased vascular permeability, which can lead to hazardous brain edema and potentially to frank brain hemorrhage formation. A pharmacological mast cell stabilizer, cromoglycate, was administered before alteplase, and it reduced these detrimental effects significantly and led to improved neurological outcome and reduced mortality.

The amount of brain hemorrhage was reduced by 97% at 3 hours, by 76% at 6 hours, and by 96% after 24 hours of follow-up. Ischemic brain edema was reduced by 80% at 3 hours, by 55% at 6 hours and by 85% after 24 hours of follow-up. The mortality in control group was 29%, 64% in alteplase group, and 0% in a group treated with a combination of alteplase and cromoglycate. kromoglikaatti+alteplaasiryhmässä 0%). Furthermore, genetically engineered animals were used which lacked mast cells, and they showed minimal brain edema and alteplase-related hemorrhage formation. They also had improved neurological outcome and mortality compared with wild-type littermates. In addition to proteolytic enzymes, mast cells release vasodilators such as histamine as well as heparin (s.c. “blood thinning” anticoagulant drug), which may locally prevent blood coagulation, predispose to bleeding and edema formation and ultimately lead to hazardous expansion of hemorrhagic and edematous brain events. The intracranial space is tight and does not allow expansion of its tissue content without harmful and potentially fatal consequences.

This study revealed a novel proinflammatory cellular mechanism related to an every-day dilemma in routine patient care that may provide a novel pharmacological target if confirmed in the clinical setting. At best, mast cell stabilization could eventually be applied as an adjuvant to thrombolysis.

Perttu Lindsberg | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The nanostructured cloak of invisibility

25.10.2016 | Life Sciences

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

More VideoLinks >>>