Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel method to prevent hemorrhagic complications of thrombolytic therapy of blood clots is discovered

02.07.2007
Blood clot dissolution by thrombolytic therapy is an approved, safe and efficaceous therapy of acute ischemic stroke. It is in routine use world-wide, and prevents individuals from stroke-related long-term disability.

Many safe therapy forms, however, are often associated with hazards, and therefore indications for therapy must be weighed on an individual basis. In stroke thrombolysis, it is the risk of perithrombolytic hemorrhage formation and expansive brain edema that are most feared complications, and may preclude from administering the therapy. Even after proper precautions, perithrombolytic hemorrhages occur in 6 to 10 % of treated patients. Therefore, experimental research is needed to clarify the mechanisms leading to these complications.

The now reported study led by Dr. Perttu J. Lindsberg from the Helsinki University Central Hospital investigated thrombolytics-related brain hemorrhage formation in an experimental stroke model in rats. It found that, in addition to the clot lysing effect, the drug used for this purpose, alteplase (recombinant tissue plasminogen activator) also possesses proinflammatory properties and activates and degranulates mast cells, a kind of tissue-based immune cell. On degranulation, mast cells release potent enzymes that cleave proteins (eg, chymase, tryptase, and metalloproteases) in the vessel wall. The result is increased vascular permeability, which can lead to hazardous brain edema and potentially to frank brain hemorrhage formation. A pharmacological mast cell stabilizer, cromoglycate, was administered before alteplase, and it reduced these detrimental effects significantly and led to improved neurological outcome and reduced mortality.

The amount of brain hemorrhage was reduced by 97% at 3 hours, by 76% at 6 hours, and by 96% after 24 hours of follow-up. Ischemic brain edema was reduced by 80% at 3 hours, by 55% at 6 hours and by 85% after 24 hours of follow-up. The mortality in control group was 29%, 64% in alteplase group, and 0% in a group treated with a combination of alteplase and cromoglycate. kromoglikaatti+alteplaasiryhmässä 0%). Furthermore, genetically engineered animals were used which lacked mast cells, and they showed minimal brain edema and alteplase-related hemorrhage formation. They also had improved neurological outcome and mortality compared with wild-type littermates. In addition to proteolytic enzymes, mast cells release vasodilators such as histamine as well as heparin (s.c. “blood thinning” anticoagulant drug), which may locally prevent blood coagulation, predispose to bleeding and edema formation and ultimately lead to hazardous expansion of hemorrhagic and edematous brain events. The intracranial space is tight and does not allow expansion of its tissue content without harmful and potentially fatal consequences.

This study revealed a novel proinflammatory cellular mechanism related to an every-day dilemma in routine patient care that may provide a novel pharmacological target if confirmed in the clinical setting. At best, mast cell stabilization could eventually be applied as an adjuvant to thrombolysis.

Terttu Nurro | alfa
Further information:
http://www.helsinki.fi

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>