Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Ret Chip for the Diagnosis of Hereditary Diseases of the Retina: A Huge Step Forward

Patients’ organization contributes 250,000 euros in funding for the development of the chip

In Europe roughly one child in 4,000 is born with a hereditary retina disorder. The most common disorder is retinitis pigmentosa, of which there are a number of different variants. Although ophthalmologists can diagnose the destruction of nerve cells in the retina, in most cases they can’t offer patients any treatment. In addition, the way the disorder develops varies from patient to patient. Some patients go completely blind, in others their vision is “only” seriously impaired. “This uncertainty is there in the back of the minds of those affected, ” says Franz Badura, a member of the board of the Pro Retina Foundation and head of the Department of Research and Therapy of the self-help organization Pro Retina Deutschland e.V.

So far researchers have succeeded in characterizing almost 140 genes and in finding the genes that cause the hereditary eye disorder. “There are about 40 different genes involved in the various forms of retinitis pigmentosa alone,“ says Professor Bernhard Weber, director of the Institute for Human Genetics at the University of Regensburg. This enormous genetic variety is one reason why until now human geneticists have only been able to find the responsible gene in 10-20 percent of patients. In this situation it is, for example, difficult or even impossible to predict how great a child’s risk is of developing the disease.

This will now be changed by the Ret Chip. The chip contains 300,000 base pairs – the building blocks of the genetic substance DNA – and 72 different genes, which can be analyzed in parallel in a single process. As well as the genes that cause the different forms of retinitis pigmentosa and the hereditary forms of macula degeneration, the chip also includes a group of genes which not only cause the retina to degenerate but are also responsible for problems in other organs, such as Usher syndrome and Bardet-Biedl syndrome.

“The new technology will now allow us to test a very large number of genes simultaneously, thus increasing the likelihood of detecting a mutation and thus the cause of the disease. That is of course a huge step forward,” Weber says.

More precise diagnosis may make it easier in the future for doctors to make a prognosis, i. e., to predict how the disease will develop in individual cases and thus allay the fears and uncertainty of many patients. “In Morbus Stargardt, for example, the mutation allows us to see whether the corresponding protein is actually being produced or to what extent it is still active. We can thus say approximately how the disease will develop,” Weber explains.

Initially the Regensburg researchers will be subjecting the chip to critical tests in collaboration with several centres in Germany. At the centres in Berlin, Bonn-Siegburg, Tübingen and Regensburg patients will undergo clinical examinations and will receive a genetic consultation. There a blood sample will be taken that will then be genetically analyzed back in Regensburg. “In view of the new approaches in the field of gene therapy the status of molecular diagnostics is growing,” Franz Badura stresses. “It will become increasingly important for patients to know the genetic causes of their disorders.”

The Pro Retina Foundation for the Prevention of Blindness, supported by the self-help organization for people with degeneration of the retina, Pro Retina e.V., provided 250,000 euros in funding for the development of the Ret Chip. “Our organization has been involved in research funding for many years and has so far raised one million euros,” says Dr. Claus Gehrig, chairman of the patients’ organization. “The Ret-Chip will clearly have a direct link to patients,” Gehrig continued. “That is more than just basic research. We hope very much that the new technology will make the diagnosis and prognosis of hereditary retina disorders easier.”

It is not yet clear exactly how expensive a Ret-Chip examination will be, since not all the genes on the chip need to be used fully in every case, but Weber thinks it will cost between 3,000 and 4,000 euros. It is expected that the cost will be borne by the health insurance funds.

Barbara Ritzert | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>