Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Ret Chip for the Diagnosis of Hereditary Diseases of the Retina: A Huge Step Forward

29.06.2007
Patients’ organization contributes 250,000 euros in funding for the development of the chip

In Europe roughly one child in 4,000 is born with a hereditary retina disorder. The most common disorder is retinitis pigmentosa, of which there are a number of different variants. Although ophthalmologists can diagnose the destruction of nerve cells in the retina, in most cases they can’t offer patients any treatment. In addition, the way the disorder develops varies from patient to patient. Some patients go completely blind, in others their vision is “only” seriously impaired. “This uncertainty is there in the back of the minds of those affected, ” says Franz Badura, a member of the board of the Pro Retina Foundation and head of the Department of Research and Therapy of the self-help organization Pro Retina Deutschland e.V.

So far researchers have succeeded in characterizing almost 140 genes and in finding the genes that cause the hereditary eye disorder. “There are about 40 different genes involved in the various forms of retinitis pigmentosa alone,“ says Professor Bernhard Weber, director of the Institute for Human Genetics at the University of Regensburg. This enormous genetic variety is one reason why until now human geneticists have only been able to find the responsible gene in 10-20 percent of patients. In this situation it is, for example, difficult or even impossible to predict how great a child’s risk is of developing the disease.

This will now be changed by the Ret Chip. The chip contains 300,000 base pairs – the building blocks of the genetic substance DNA – and 72 different genes, which can be analyzed in parallel in a single process. As well as the genes that cause the different forms of retinitis pigmentosa and the hereditary forms of macula degeneration, the chip also includes a group of genes which not only cause the retina to degenerate but are also responsible for problems in other organs, such as Usher syndrome and Bardet-Biedl syndrome.

“The new technology will now allow us to test a very large number of genes simultaneously, thus increasing the likelihood of detecting a mutation and thus the cause of the disease. That is of course a huge step forward,” Weber says.

More precise diagnosis may make it easier in the future for doctors to make a prognosis, i. e., to predict how the disease will develop in individual cases and thus allay the fears and uncertainty of many patients. “In Morbus Stargardt, for example, the mutation allows us to see whether the corresponding protein is actually being produced or to what extent it is still active. We can thus say approximately how the disease will develop,” Weber explains.

Initially the Regensburg researchers will be subjecting the chip to critical tests in collaboration with several centres in Germany. At the centres in Berlin, Bonn-Siegburg, Tübingen and Regensburg patients will undergo clinical examinations and will receive a genetic consultation. There a blood sample will be taken that will then be genetically analyzed back in Regensburg. “In view of the new approaches in the field of gene therapy the status of molecular diagnostics is growing,” Franz Badura stresses. “It will become increasingly important for patients to know the genetic causes of their disorders.”

The Pro Retina Foundation for the Prevention of Blindness, supported by the self-help organization for people with degeneration of the retina, Pro Retina e.V., provided 250,000 euros in funding for the development of the Ret Chip. “Our organization has been involved in research funding for many years and has so far raised one million euros,” says Dr. Claus Gehrig, chairman of the patients’ organization. “The Ret-Chip will clearly have a direct link to patients,” Gehrig continued. “That is more than just basic research. We hope very much that the new technology will make the diagnosis and prognosis of hereditary retina disorders easier.”

It is not yet clear exactly how expensive a Ret-Chip examination will be, since not all the genes on the chip need to be used fully in every case, but Weber thinks it will cost between 3,000 and 4,000 euros. It is expected that the cost will be borne by the health insurance funds.

Barbara Ritzert | alfa
Further information:
http://www.pro-retina.de

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>