Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe decay detector developed by dentists and textile experts

20.03.2002


Tooth decay could soon be detected without resorting to potentially harmful X-rays - by using a novel electrical technique developed by dental researchers at the University of Dundee in an unusual partnership with textile experts at Heriot Watt University.



Laboratory tests show the device, which measures the electrical resistance of teeth, is twice as accurate as current examination techniques and detects decay in its earliest stages when preventive treatment is still possible.

Known as ACIST - which stands for AC impedance spectroscopy technique -the device has been developed by the Dundee team together with colleagues in St Andrews University. The sensor, which was patented in 1996, is being developed in collaboration with textile specialists at Heriot Watt University.


The Dundee and Heriot Watt teams learned yesterday they have been awarded £139,500 funding by Scottish Enterprise through the Proof of Concept Fund, to develop a prototype probe for testing. If successful it could be in the market place in two years.

The concept exploits the change in the nature of the tooth as it decays. As caries progresses microscopic pores develop in the tooth which fill with fluid that conducts current. By applying an electrically conductive strip to the tooth and passing a small electrical current through it,
dentists can use the amount of resistance to the charge as a gauge of whether there is any decay.

Principal investigator Dr Chris Longbottom: "The technique is expected to be faster, safer and more accurate than X-rays which is good news for patients, dentists and the health service where it has cost-saving implications. By picking up the disease at an early stage it will also be
possible in many cases to stop or even to reverse the decay thus saving more teeth."

The plastic sensor used to measure the electrical resistance is being developed by Heriot Watt`s school of textiles in Galashiels who are working on a special polymer that could be inserted between the teeth like a wider type of dental floss.

The information from the sensor is fed to the electrical device and could be used by dentists instead of a traditional X-ray.

Once complete the probe will be clinically tested and assessed by dental researchers and, if successful, it could be taken to the commercial stage.

Dr Longbottom welcomed the funding award: "This funding will allow us to take an original concept which works in the laboratory and test its true potential in prototype as a first step towards possible commercialisation.

Caroline Petrie | alphagalileo
Further information:
http://dundee.ac.uk/

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>