Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Safe decay detector developed by dentists and textile experts


Tooth decay could soon be detected without resorting to potentially harmful X-rays - by using a novel electrical technique developed by dental researchers at the University of Dundee in an unusual partnership with textile experts at Heriot Watt University.

Laboratory tests show the device, which measures the electrical resistance of teeth, is twice as accurate as current examination techniques and detects decay in its earliest stages when preventive treatment is still possible.

Known as ACIST - which stands for AC impedance spectroscopy technique -the device has been developed by the Dundee team together with colleagues in St Andrews University. The sensor, which was patented in 1996, is being developed in collaboration with textile specialists at Heriot Watt University.

The Dundee and Heriot Watt teams learned yesterday they have been awarded £139,500 funding by Scottish Enterprise through the Proof of Concept Fund, to develop a prototype probe for testing. If successful it could be in the market place in two years.

The concept exploits the change in the nature of the tooth as it decays. As caries progresses microscopic pores develop in the tooth which fill with fluid that conducts current. By applying an electrically conductive strip to the tooth and passing a small electrical current through it,
dentists can use the amount of resistance to the charge as a gauge of whether there is any decay.

Principal investigator Dr Chris Longbottom: "The technique is expected to be faster, safer and more accurate than X-rays which is good news for patients, dentists and the health service where it has cost-saving implications. By picking up the disease at an early stage it will also be
possible in many cases to stop or even to reverse the decay thus saving more teeth."

The plastic sensor used to measure the electrical resistance is being developed by Heriot Watt`s school of textiles in Galashiels who are working on a special polymer that could be inserted between the teeth like a wider type of dental floss.

The information from the sensor is fed to the electrical device and could be used by dentists instead of a traditional X-ray.

Once complete the probe will be clinically tested and assessed by dental researchers and, if successful, it could be taken to the commercial stage.

Dr Longbottom welcomed the funding award: "This funding will allow us to take an original concept which works in the laboratory and test its true potential in prototype as a first step towards possible commercialisation.

Caroline Petrie | alphagalileo
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>