Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Knockout’ technique tested successfully on mice

27.06.2007
No more choking and burning eyes? Hebrew University Ph.D. Student develops new approach to eliminating allergies, asthma

Allergies, like the common cold and asthma, have basically defied the best efforts of modern medicine to cure them. Now, a doctoral candidate at the Hebrew University of Jerusalem School of Pharmacy has come up with a new approach that offers hope for getting rid of them.

For his efforts, Chilean-born Ido Bachelet, a first cousin of the president of Chile, Michelle Bachelet, and a Ph.D. student under the supervision of Prof. Francesca Levi-Schaffer, has been named the winner of one of this year’s Barenholz Prizes for Creativity and Originality in Applied Research. The award, named for its donor, Yehezkel Barenholz, the Dr. Daniel G. Miller Professor of Cancer Research at the Hebrew University-Hadassah Medical School, was presented recently during the Hebrew University Board of Governors 70th meeting.

Bachelet’s research has focused on mechanisms that regulate the function of mast cells – the “villains” in triggering allergic reactions. When exposed to allergens, mast cells react violently and release an enormous array of pro-inflammatory substances, of which histamine is a well known example. These substances lead to acute symptoms ranging from stuffy nose, rash, and airway constriction to the lethal shock known from food or venom allergies. Later on, they attract inflammatory cells that will maintain the response, which often persists as a chronic disease.

Although allergies are usually not perceived as lethal, reality is different. In 2005, over 250,000 people died from asthma worldwide. The World Health Organization estimates that this rate will increase by 20 percent within the next decade if urgent action is not taken. Asthma is the most common chronic disease among children.

Bachelet has identified a receptor protein on mast cells, termed CD300a. This receptor has a prominent negative effect on mast cell activity, virtually shutting down the cell from unleashing allergic responses. Unfortunately, CD300a is widely found throughout the immune system, and simply targeting it could result in undesired, overall immune suppression with serious consequences, as can happen with steroids.

In order to overcome this problem, Bachelet and his research colleague, Ariel Munitz, have designed a small, synthetic, antibody fragment that has the unusual ability of recognizing two targets simultaneously -- the receptor CD300a and a mast cell-specific marker. Thus, the antibody targets CD300a only on the surface of mast cells, avoiding suppression of other immune cells. This antibody potently eliminated four different types of allergic diseases in mice. Moreover, when mice suffering from severe chronic asthma received the antibody in nose drops, they completely reverted to normal, healthy mice in less than two months.

This pioneering project, termed RECEPTRA, presents a novel therapeutic strategy for acute and chronic allergic diseases, and is currently being licensed through Yissum, the Hebrew University’s technology transfer company, to pharmaceutical companies for further development and eventual clinical trials.

Based on its enormous potential, Bachelet and his team predict that with further development, their technology will become the first line of allergy therapy in the near future.

For further information:
Jerry Barach,
Dept. of Media Relations,
the Hebrew University,
Tel: 02-588-2904, or
Orit Sulitzeanu,
Hebrew University spokesperson,
Tel: 02-5882910 or 052-260-8016.

Jerry Barach | The Hebrew University of Jerusal
Further information:
http://media.huji.ac.il

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>