Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


‘Knockout’ technique tested successfully on mice

No more choking and burning eyes? Hebrew University Ph.D. Student develops new approach to eliminating allergies, asthma

Allergies, like the common cold and asthma, have basically defied the best efforts of modern medicine to cure them. Now, a doctoral candidate at the Hebrew University of Jerusalem School of Pharmacy has come up with a new approach that offers hope for getting rid of them.

For his efforts, Chilean-born Ido Bachelet, a first cousin of the president of Chile, Michelle Bachelet, and a Ph.D. student under the supervision of Prof. Francesca Levi-Schaffer, has been named the winner of one of this year’s Barenholz Prizes for Creativity and Originality in Applied Research. The award, named for its donor, Yehezkel Barenholz, the Dr. Daniel G. Miller Professor of Cancer Research at the Hebrew University-Hadassah Medical School, was presented recently during the Hebrew University Board of Governors 70th meeting.

Bachelet’s research has focused on mechanisms that regulate the function of mast cells – the “villains” in triggering allergic reactions. When exposed to allergens, mast cells react violently and release an enormous array of pro-inflammatory substances, of which histamine is a well known example. These substances lead to acute symptoms ranging from stuffy nose, rash, and airway constriction to the lethal shock known from food or venom allergies. Later on, they attract inflammatory cells that will maintain the response, which often persists as a chronic disease.

Although allergies are usually not perceived as lethal, reality is different. In 2005, over 250,000 people died from asthma worldwide. The World Health Organization estimates that this rate will increase by 20 percent within the next decade if urgent action is not taken. Asthma is the most common chronic disease among children.

Bachelet has identified a receptor protein on mast cells, termed CD300a. This receptor has a prominent negative effect on mast cell activity, virtually shutting down the cell from unleashing allergic responses. Unfortunately, CD300a is widely found throughout the immune system, and simply targeting it could result in undesired, overall immune suppression with serious consequences, as can happen with steroids.

In order to overcome this problem, Bachelet and his research colleague, Ariel Munitz, have designed a small, synthetic, antibody fragment that has the unusual ability of recognizing two targets simultaneously -- the receptor CD300a and a mast cell-specific marker. Thus, the antibody targets CD300a only on the surface of mast cells, avoiding suppression of other immune cells. This antibody potently eliminated four different types of allergic diseases in mice. Moreover, when mice suffering from severe chronic asthma received the antibody in nose drops, they completely reverted to normal, healthy mice in less than two months.

This pioneering project, termed RECEPTRA, presents a novel therapeutic strategy for acute and chronic allergic diseases, and is currently being licensed through Yissum, the Hebrew University’s technology transfer company, to pharmaceutical companies for further development and eventual clinical trials.

Based on its enormous potential, Bachelet and his team predict that with further development, their technology will become the first line of allergy therapy in the near future.

For further information:
Jerry Barach,
Dept. of Media Relations,
the Hebrew University,
Tel: 02-588-2904, or
Orit Sulitzeanu,
Hebrew University spokesperson,
Tel: 02-5882910 or 052-260-8016.

Jerry Barach | The Hebrew University of Jerusal
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>