Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for combating prostate cancer

22.06.2007
A novel method of drug delivery to inhibit the growth of prostate cancer cells has been developed by a doctoral candidate in pharmacy at the Hebrew University of Jerusalem.

The student, Danny Goldstein, received the Barenholz Prize for Creativity and Originality in Applied Research for his work. The award, named for its donor, Yehezkel Barenholz, the Dr. Daniel G. Miller Professor of Cancer Research at the Hebrew University-Hadassah Medical School, was presented recently during the 70th meeting of the Hebrew University’s Board of Governors.

Prostate cancer is the second leading cause of cancer-related death for men in the U.S. Present treatments for metastatic prostate cancer (cancer cells that spread to other parts of the body) include hormonal therapy, chemotherapy and radiotherapy, which frequently have serious side effects.

The well known drug, paclitaxel, exhibits a wide spectrum of anti-tumor activity. However, its therapeutic application in cancer therapy is limited, in part, due to its low water solubility, making it difficult to effectively deliver the drug to the points needed. It is also known to induce hypersensitivity reactions. Therefore, novel methods are needed that would allow for delivery of effective concentrations of paclitaxel over extended time intervals while minimizing toxicity.

Targeting drugs to disseminated prostate metastases is one of the most challenging goals in prostate cancer therapy. Drug carriers -- nanoemulsions, liposomes (fatty droplets) and nanoparticles -- have shown great potential as delivery systems for an increasing number of active molecules. Although capable of enhanced accumulation in the target tissue, these carriers cannot achieve their missions unless specific binding agents are attached to them which will ensure that they succeed in attaching to the targeted tissues.

It has been shown that the HER2 receptor is over-expressed in prostate cancer cells. It was also known that trastuzumab (an antibody) binds specifically to HER2. But there had been no clinical data indicating that this antibody would provide any relief for prostate cancer patients.

Goldstein, a student of Prof. Simon Benita, was able to show that attaching trastuzumab molecules to the surface of oil droplets in nanoemulsions made possible the targeting of such droplets to cells over-expressing the HER2 receptor. He coupled trastuzumab with emulsions containing the toxic agent paclitaxel-palmitate and evaluated the efficiency of these emulsions in laboratory tests on cancerous prostate cells and on mice with induced prostate cancer. He found that this emulsion compound did not cause a hypersensitive reaction upon injection and even yielded better results than known drug treatments while inhibiting tumor growth substantially.

Goldstein cautions that this inhibiting activity of tumor metastases growth was not absolute and that while the results are encouraging, there is a need for further research to combat metastatic prostate cancer. Prof. Benita added that he hopes clinical trials using the new method can begin in about two years.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>