Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In silico cell for TB drug discovery

21.06.2007
A team of researchers from the University of Surrey have completed the first genome-scale model of the microbe that causes tuberculosis. The model may be a highly useful tool to identify new drug targets and design new vaccines.

Tuberculosis remains one of the biggest killers in the world today being responsible for nearly ten million cases and one and a half million deaths each year. New strains are emerging that are resistant to all current front-line anti-tuberculous drugs so new drugs are urgently needed. However, little is known about the metabolism of the TB bacillus and, because of its slow growth, experiments take a very long time.

The Surrey group hopes to speed up the drug discovery process by building an in silico model of the agent that causes TB: a virtual TB bacillus. This model was constructed using information from the entire genome sequence of the pathogen and uses mathematical equations to model the flow of nutrients through the cell. The model is extremely complex, handling 848 different biochemical reactions and 726 genes. The Surrey team showed that the model successfully simulates many of the peculiar properties of the TB bacillus and identifies the drug targets of known anti-tuberculous drugs. But unlike the biological organisms, the in silico TB bacillus grows in nanoseconds so experiments that would normally take months can be performed in minutes. The group hope that the in silico model may be used to identify new drug targets, particularly those capable of killing persistent bacilli.

The work is published in the high-profile journal Genome Biology and describes not only the model but, for the first time, makes an in silico model available to other researchers via an interactive website. Researchers will be able to perform experiments on the virtual TB bacillus from a beach in Bombay or a mountaintop in Malawi. It is hoped that the availability of this novel research tool will stimulate new approaches to control of this deadly pathogen.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk
http://portal.surrey.ac.uk/portal/page?_pageid=799,1554681&_dad=portal&_schema=PORTAL

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>