Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First European trial for new breast cancer vaccine

20.03.2002


European clinical trials are under way in Denmark and the UK testing a new breast cancer vaccine targeted against the HER-2 growth factor.



HER-2 is overexpressed in about a quarter of all breast cancers and has become a key target for new treatments, such as the monoclonal antibody therapy Herceptin.

But, the development of a vaccine by Danish pharmaceutical company Pharmexa represents an entirely novel treatment paradigm, according to Pharmexa’s manager of preclinical development and immunopharmacology, Dr Dana Leach.


He told a news briefing at the 3rd European Breast Cancer Conference in Barcelona: "The objective of our vaccine is to stimulate the patient’s own immune system and to see whether we can induce it to launch specific killer cells as well as producing HER-2 specific antibodies. This is a phase I/II trial. Our first objective is to test the safety of the vaccine, but we also want to make a preliminary evaluation of the vaccine’s ability to raise an immune response. There are 27 patients with advanced breast cancer in the trial, which should be completed late this year."

HER-2 is a protein that is overexpressed in many tumours. But, because it is also expressed at low levels in some normal tissues, the immune system does not recognise it as foreign and the immune cells, especially helper T cells that initiate the immune response, are simply not around to launch an attack. So, the vaccine – AutoVac – has been designed to help kick-start the immune response by giving the T cells a foreign agent to recognise and react against. The aim is that the immune system then recognises the overexpressed HER-2 in the cancer cells and attacks them, but ignores the normal tissue because that contains only low levels.

Dr Leach said that animal tests had shown that the vaccine produced a specific immune response and there had been no adverse side effects.

The vaccine consists of two small inactive fragments derived from tetanus toxin – the bacterium that causes lockjaw. The researchers included DNA encoding the fragments, into DNA that they had made in the laboratory to code for a portion of the HER-2 molecule. The DNA vaccine is injected and taken up by the cells, which then manufacture the protein, including the inserted tetanus fragments that ‘wake up’ the immune system and help it to respond to HER-2.

Dr Leach said the company was also preparing to start clinical trials in a variation of this approach. Instead of a DNA vaccine that prompts the body’s cells to make the necessary protein, the AutoVac protein will be made beforehand in the laboratory and injected directly as a vaccine into the patient.

"Each approach has potential advantages – DNA is generally believed to be a good way to get a response from cytotoxic T cells, while protein is better at inducing antibody responses," he said. "We have to look at tackling cancer from as many different approaches as possible because different tumours react in different ways. We know that already from the variable responses to chemotherapy, radiotherapy, endocrine treatment and other immunotherapies. But, as we get better at diagnosis and understanding the genetic make-up of tumours it should become possible to make better predictions about which treatment is best for which patient and to combine treatments that work synergistically to boost effectiveness."

Dr Leach said that the success of the drug Herceptin as a treatment had shown that HER-2 was a good target. "Although it is early days yet, any time that you can successfully take a new cancer vaccine into the clinic it is an important and exciting event."

Margaret Willson | alphagalileo

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>