Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First European trial for new breast cancer vaccine

20.03.2002


European clinical trials are under way in Denmark and the UK testing a new breast cancer vaccine targeted against the HER-2 growth factor.



HER-2 is overexpressed in about a quarter of all breast cancers and has become a key target for new treatments, such as the monoclonal antibody therapy Herceptin.

But, the development of a vaccine by Danish pharmaceutical company Pharmexa represents an entirely novel treatment paradigm, according to Pharmexa’s manager of preclinical development and immunopharmacology, Dr Dana Leach.


He told a news briefing at the 3rd European Breast Cancer Conference in Barcelona: "The objective of our vaccine is to stimulate the patient’s own immune system and to see whether we can induce it to launch specific killer cells as well as producing HER-2 specific antibodies. This is a phase I/II trial. Our first objective is to test the safety of the vaccine, but we also want to make a preliminary evaluation of the vaccine’s ability to raise an immune response. There are 27 patients with advanced breast cancer in the trial, which should be completed late this year."

HER-2 is a protein that is overexpressed in many tumours. But, because it is also expressed at low levels in some normal tissues, the immune system does not recognise it as foreign and the immune cells, especially helper T cells that initiate the immune response, are simply not around to launch an attack. So, the vaccine – AutoVac – has been designed to help kick-start the immune response by giving the T cells a foreign agent to recognise and react against. The aim is that the immune system then recognises the overexpressed HER-2 in the cancer cells and attacks them, but ignores the normal tissue because that contains only low levels.

Dr Leach said that animal tests had shown that the vaccine produced a specific immune response and there had been no adverse side effects.

The vaccine consists of two small inactive fragments derived from tetanus toxin – the bacterium that causes lockjaw. The researchers included DNA encoding the fragments, into DNA that they had made in the laboratory to code for a portion of the HER-2 molecule. The DNA vaccine is injected and taken up by the cells, which then manufacture the protein, including the inserted tetanus fragments that ‘wake up’ the immune system and help it to respond to HER-2.

Dr Leach said the company was also preparing to start clinical trials in a variation of this approach. Instead of a DNA vaccine that prompts the body’s cells to make the necessary protein, the AutoVac protein will be made beforehand in the laboratory and injected directly as a vaccine into the patient.

"Each approach has potential advantages – DNA is generally believed to be a good way to get a response from cytotoxic T cells, while protein is better at inducing antibody responses," he said. "We have to look at tackling cancer from as many different approaches as possible because different tumours react in different ways. We know that already from the variable responses to chemotherapy, radiotherapy, endocrine treatment and other immunotherapies. But, as we get better at diagnosis and understanding the genetic make-up of tumours it should become possible to make better predictions about which treatment is best for which patient and to combine treatments that work synergistically to boost effectiveness."

Dr Leach said that the success of the drug Herceptin as a treatment had shown that HER-2 was a good target. "Although it is early days yet, any time that you can successfully take a new cancer vaccine into the clinic it is an important and exciting event."

Margaret Willson | alphagalileo

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>