Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Burning Fat and Carbohydrate During Exercise

19.06.2007
In a paper published in The Journal of Physiology, Helge, Stallknecht, Richter, Galbo, and Keins from Copenhagen shed light on fat oxidation during exercise and physical activity. Their observations suggest that fat oxidation during exercise reflects a fine interplay between the cardiovascular, neurological, endocrine and muscle metabolic systems.

During exercise and physical activity, the primary fuels used by muscles are carbohydrate and fat. When mild exercise is performed there is a tendency to burn relatively more fat and less glucose, but as exercise becomes more intense, a higher fraction of the energy demands of the muscle are supplied by glucose, until at the highest intensities almost only carbohydrates are used. Is this shift in fuel source a property of the muscle itself, or does it represent the interplay between what is happening in the muscle and the exercise-related responses in the rest of the body?

The study, performed at the Copenhagen Muscle Research Centre at the University of Copenhagen, examined muscle fuel utilisation in response to graded exercise performed with only one leg. Nine healthy males performed one-leg exercise at 25, 45, and 85% of maximal workload. Their results showed that, when only a small mass of muscle is contracting, and blood flow and oxygen supply are not limited by central circulatory capacity, the shift in fuel source from fat to glucose as exercise intensity increases does not occur.

Helge et al.’s findings show that the adaptations in the rest of the body are the key to this fuel source shift during whole body exercise. They also help scientists understand why athletes "hit the wall" during events like the marathon, and they have implications for the adaptations made in middle-aged adults who are using exercise to prevent or treat conditions like diabetes and obesity. If the mechanisms can be fully understood, it may be possible to develop agents that allow fat oxidation to be maintained even during intense exercise with a large muscle mass.

Melanie Thomson | alfa
Further information:
http://jp.physoc.org
http://www.blackwellpublishing.com

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>