Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Burning Fat and Carbohydrate During Exercise

19.06.2007
In a paper published in The Journal of Physiology, Helge, Stallknecht, Richter, Galbo, and Keins from Copenhagen shed light on fat oxidation during exercise and physical activity. Their observations suggest that fat oxidation during exercise reflects a fine interplay between the cardiovascular, neurological, endocrine and muscle metabolic systems.

During exercise and physical activity, the primary fuels used by muscles are carbohydrate and fat. When mild exercise is performed there is a tendency to burn relatively more fat and less glucose, but as exercise becomes more intense, a higher fraction of the energy demands of the muscle are supplied by glucose, until at the highest intensities almost only carbohydrates are used. Is this shift in fuel source a property of the muscle itself, or does it represent the interplay between what is happening in the muscle and the exercise-related responses in the rest of the body?

The study, performed at the Copenhagen Muscle Research Centre at the University of Copenhagen, examined muscle fuel utilisation in response to graded exercise performed with only one leg. Nine healthy males performed one-leg exercise at 25, 45, and 85% of maximal workload. Their results showed that, when only a small mass of muscle is contracting, and blood flow and oxygen supply are not limited by central circulatory capacity, the shift in fuel source from fat to glucose as exercise intensity increases does not occur.

Helge et al.’s findings show that the adaptations in the rest of the body are the key to this fuel source shift during whole body exercise. They also help scientists understand why athletes "hit the wall" during events like the marathon, and they have implications for the adaptations made in middle-aged adults who are using exercise to prevent or treat conditions like diabetes and obesity. If the mechanisms can be fully understood, it may be possible to develop agents that allow fat oxidation to be maintained even during intense exercise with a large muscle mass.

Melanie Thomson | alfa
Further information:
http://jp.physoc.org
http://www.blackwellpublishing.com

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

How cheetahs stay fit and healthy

24.03.2017 | Life Sciences

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>