Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Burning Fat and Carbohydrate During Exercise

19.06.2007
In a paper published in The Journal of Physiology, Helge, Stallknecht, Richter, Galbo, and Keins from Copenhagen shed light on fat oxidation during exercise and physical activity. Their observations suggest that fat oxidation during exercise reflects a fine interplay between the cardiovascular, neurological, endocrine and muscle metabolic systems.

During exercise and physical activity, the primary fuels used by muscles are carbohydrate and fat. When mild exercise is performed there is a tendency to burn relatively more fat and less glucose, but as exercise becomes more intense, a higher fraction of the energy demands of the muscle are supplied by glucose, until at the highest intensities almost only carbohydrates are used. Is this shift in fuel source a property of the muscle itself, or does it represent the interplay between what is happening in the muscle and the exercise-related responses in the rest of the body?

The study, performed at the Copenhagen Muscle Research Centre at the University of Copenhagen, examined muscle fuel utilisation in response to graded exercise performed with only one leg. Nine healthy males performed one-leg exercise at 25, 45, and 85% of maximal workload. Their results showed that, when only a small mass of muscle is contracting, and blood flow and oxygen supply are not limited by central circulatory capacity, the shift in fuel source from fat to glucose as exercise intensity increases does not occur.

Helge et al.’s findings show that the adaptations in the rest of the body are the key to this fuel source shift during whole body exercise. They also help scientists understand why athletes "hit the wall" during events like the marathon, and they have implications for the adaptations made in middle-aged adults who are using exercise to prevent or treat conditions like diabetes and obesity. If the mechanisms can be fully understood, it may be possible to develop agents that allow fat oxidation to be maintained even during intense exercise with a large muscle mass.

Melanie Thomson | alfa
Further information:
http://jp.physoc.org
http://www.blackwellpublishing.com

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>