Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sepsis model may help shape patient care

14.06.2007
A new mathematical model of sepsis can help predict deaths, discharges, and disease progression in hospital patients with this serious bacterial blood infection. It’s hoped the model, described in the online open access journal Critical Care, will help clinicians assess which interventions are likely to be best for their patients.

Mark S. Roberts and colleagues from the University of Pittsburgh used data from a large, multi-centre study to develop their dynamic microsimulation model. This included information on admission date, movement between wards, trips to the intensive care unit, discharge, deaths and disease progression from more than 1,800 patients with pneumonia-related sepsis.

They found that their model closely predicts changing health and the pattern and number of discharges and deaths in patients over a 30-day period. There were 1,776 discharges in the original multi-centre study, and based on the precision of its patient-matching algorithms, the model predicted between 1,779 and 1,804. The model forecast between 62 and 84 of the 85 patients who actually died[MSR1]. The researchers also found the simulation model could predict not only the number but also the pattern of events over time, although the ability to predict when deaths and discharges occur over time varies.

The model has certain advantages over predecessors, which assume a constant rate of disease progression, and often don’t incorporate past clinical history. The result is a more powerful model that can help predict the individual course and outcome of disease. Sepsis affects approximately 750,000 people in the US alone every year, and around a third of these die. With the ability to influence clinical decisions and patient outcomes, this makes the new simulation technique a powerful tool.

Press Officer | alfa
Further information:
http://www.biomedcentral.com
http://www.biomedcentral.com/graphics/sepsis_model_figure1.gif

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>