Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel model of childhood obesity

13.06.2007
Novel model of childhood obesity increases understanding of mechanisms controlling how much we eat

The consumption of sweetened soft drinks by children has more than doubled between 1965 and 1996 and the contribution of these drinks to the development of childhood obesity is a cause for concern. Few studies have attempted to investigate the interactions between diet and the body’s energy balance control systems in early life, for obvious reasons. A model of childhood obesity using fast-growing juvenile rats has been developed by scientists at Aberdeen’s Rowett Research Institute and it is beginning to reveal new insights into how the brain responds to overeating.

The need for a better understanding of what is happening to the body’s energy balance control mechanisms during the development of obesity is becoming increasingly important as we struggle, and often fail, to treat weight gain with weight-loss diets. There are many studies of diet-induced obesity with adult rats but very few with juvenile rats. The Aberdeen scientists successfully developed a potential model for childhood obesity using fast-growing juvenile rats that were fed different combinations of high-energy diets in combination with a high-energy liquid drink.

The ability of liquid diets to stimulate overeating in rats more readily than solid diets is well documented, but the mechanism of this effect, and specifically the interaction of these obesity-inducing diets with the body’s energy balance control systems has not been explored in any depth.

The recently-published studies showed large changes in the brain’s signalling systems when the young rats were overeating, but the response was the same whether the rats were eating solid food, or receiving a high-energy drink. Although the high-energy diets eaten by the rats produced this response, it failed to make the young rats reduce the amount of food they were eating.

“The brain’s response to over-eating which we showed in this study is actually part of the same system that is designed to stop animals starving to death. When an animal is hungry, or food is in short supply, the brain signals are very effective at making it try and find food at all costs. There’s a clear evolutionary benefit in having this system,” said Professor Julian Mercer who led the study at the Rowett Institute.

“However, when the system is effectively put into reverse, when animals are overeating, we can clearly see a response, but for some reason this time it doesn’t make the rats change their behaviour, and so they continue to overeat. Perhaps the evolutionary drive to stop overeating isn’t as powerful as the drive not to starve. It seems likely that these obesity-inducing diets also engage the parts of our brain which are to do with pleasure and reward, and our future work with this model will investigate these systems.

“It’s also interesting to note that the response we measured was to the weight gain by the rats and it was the same whether the source of the extra energy was solid food or the high-energy drink,” said Professor Mercer.

Sue Bird | alfa
Further information:
http://www.rowett.ac.uk

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>