Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel model of childhood obesity

13.06.2007
Novel model of childhood obesity increases understanding of mechanisms controlling how much we eat

The consumption of sweetened soft drinks by children has more than doubled between 1965 and 1996 and the contribution of these drinks to the development of childhood obesity is a cause for concern. Few studies have attempted to investigate the interactions between diet and the body’s energy balance control systems in early life, for obvious reasons. A model of childhood obesity using fast-growing juvenile rats has been developed by scientists at Aberdeen’s Rowett Research Institute and it is beginning to reveal new insights into how the brain responds to overeating.

The need for a better understanding of what is happening to the body’s energy balance control mechanisms during the development of obesity is becoming increasingly important as we struggle, and often fail, to treat weight gain with weight-loss diets. There are many studies of diet-induced obesity with adult rats but very few with juvenile rats. The Aberdeen scientists successfully developed a potential model for childhood obesity using fast-growing juvenile rats that were fed different combinations of high-energy diets in combination with a high-energy liquid drink.

The ability of liquid diets to stimulate overeating in rats more readily than solid diets is well documented, but the mechanism of this effect, and specifically the interaction of these obesity-inducing diets with the body’s energy balance control systems has not been explored in any depth.

The recently-published studies showed large changes in the brain’s signalling systems when the young rats were overeating, but the response was the same whether the rats were eating solid food, or receiving a high-energy drink. Although the high-energy diets eaten by the rats produced this response, it failed to make the young rats reduce the amount of food they were eating.

“The brain’s response to over-eating which we showed in this study is actually part of the same system that is designed to stop animals starving to death. When an animal is hungry, or food is in short supply, the brain signals are very effective at making it try and find food at all costs. There’s a clear evolutionary benefit in having this system,” said Professor Julian Mercer who led the study at the Rowett Institute.

“However, when the system is effectively put into reverse, when animals are overeating, we can clearly see a response, but for some reason this time it doesn’t make the rats change their behaviour, and so they continue to overeat. Perhaps the evolutionary drive to stop overeating isn’t as powerful as the drive not to starve. It seems likely that these obesity-inducing diets also engage the parts of our brain which are to do with pleasure and reward, and our future work with this model will investigate these systems.

“It’s also interesting to note that the response we measured was to the weight gain by the rats and it was the same whether the source of the extra energy was solid food or the high-energy drink,” said Professor Mercer.

Sue Bird | alfa
Further information:
http://www.rowett.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>