Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel model of childhood obesity

13.06.2007
Novel model of childhood obesity increases understanding of mechanisms controlling how much we eat

The consumption of sweetened soft drinks by children has more than doubled between 1965 and 1996 and the contribution of these drinks to the development of childhood obesity is a cause for concern. Few studies have attempted to investigate the interactions between diet and the body’s energy balance control systems in early life, for obvious reasons. A model of childhood obesity using fast-growing juvenile rats has been developed by scientists at Aberdeen’s Rowett Research Institute and it is beginning to reveal new insights into how the brain responds to overeating.

The need for a better understanding of what is happening to the body’s energy balance control mechanisms during the development of obesity is becoming increasingly important as we struggle, and often fail, to treat weight gain with weight-loss diets. There are many studies of diet-induced obesity with adult rats but very few with juvenile rats. The Aberdeen scientists successfully developed a potential model for childhood obesity using fast-growing juvenile rats that were fed different combinations of high-energy diets in combination with a high-energy liquid drink.

The ability of liquid diets to stimulate overeating in rats more readily than solid diets is well documented, but the mechanism of this effect, and specifically the interaction of these obesity-inducing diets with the body’s energy balance control systems has not been explored in any depth.

The recently-published studies showed large changes in the brain’s signalling systems when the young rats were overeating, but the response was the same whether the rats were eating solid food, or receiving a high-energy drink. Although the high-energy diets eaten by the rats produced this response, it failed to make the young rats reduce the amount of food they were eating.

“The brain’s response to over-eating which we showed in this study is actually part of the same system that is designed to stop animals starving to death. When an animal is hungry, or food is in short supply, the brain signals are very effective at making it try and find food at all costs. There’s a clear evolutionary benefit in having this system,” said Professor Julian Mercer who led the study at the Rowett Institute.

“However, when the system is effectively put into reverse, when animals are overeating, we can clearly see a response, but for some reason this time it doesn’t make the rats change their behaviour, and so they continue to overeat. Perhaps the evolutionary drive to stop overeating isn’t as powerful as the drive not to starve. It seems likely that these obesity-inducing diets also engage the parts of our brain which are to do with pleasure and reward, and our future work with this model will investigate these systems.

“It’s also interesting to note that the response we measured was to the weight gain by the rats and it was the same whether the source of the extra energy was solid food or the high-energy drink,” said Professor Mercer.

Sue Bird | alfa
Further information:
http://www.rowett.ac.uk

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>