Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pre-treatment blood test could guide lung cancer therapy

06.06.2007
A multi-center team, led by Vanderbilt-Ingram Cancer Center investigators, has discovered a “signature” of proteins in the blood that predicts which non-small-cell lung cancer patients will live longer when they are treated with certain targeted cancer therapies.

The findings, published June 6 in the Journal of the National Cancer Institute, could one day help physicians decide which lung cancer patients to treat with drugs known collectively as EGF receptor tyrosine kinase inhibitors, a step forward in the era of personalized medicine.

“There’s a real clinical need to identify which patients will benefit from targeted therapies,” said David Carbone, M.D., Ph.D., Harold L. Moses Professor of Cancer Research at Vanderbilt-Ingram and the senior author of the study. “If our findings are confirmed, we will be able to use a simple and inexpensive blood test to select the most beneficial therapy for each patient.”

Targeted cancer therapies are the newest generation of anti-cancer drugs. In contrast to traditional chemotherapy, targeted therapies affect proteins and signaling pathways that are selectively activated in certain malignant cells and not in normal cells. But this selectivity makes these therapies effective only for the subset of patients whose tumors are “driven” by the targeted pathways.

The drawbacks of treating every patient with a targeted therapy include the expense of these drugs, the delay – for those who do not respond – in initiation of effective therapy, and the possibility that some patients will be harmed by the targeted therapy.

In the case of the EGF receptor tyrosine kinase inhibitors (TKIs) gefitinib (Iressa) and erlotinib (Tarceva), studies have demonstrated a survival benefit for 30 to 40 percent of lung cancer patients, but there has been no method for identifying these patients prior to treatment, Carbone said.

Investigators at Vanderbilt-Ingram, the University of Colorado in Aurora, Colo., and Biodesix Inc. in Steamboat Springs, Colo., with worldwide collaborators providing patient samples, set out to determine if a protein profile in the peripheral blood could predict clinical benefit – measured in terms of patient survival – to EGF receptor TKIs.

Using mass spectrometry, the researchers analyzed pre-treatment blood samples from 139 patients who had been treated with gefitinib (three patient cohorts in Italy and Japan), identified a pattern of eight proteins that was correlated with survival, and developed a prediction algorithm.

They then tested the algorithm in two additional groups of patients – 67 gefitinib-treated patients in Italy and 96 erlotinib-treated patients in a U.S. Eastern Cooperative Oncology Group protocol. At the time of the mass spectrometry analysis and classification, the researchers were “blind” to the survival status of the patients.

“We classified the patients as being either likely to benefit (“good”) or not likely to benefit (“poor”) from the TKIs,” Carbone said.

The method was highly successful in predicting a survival benefit. In the gefitinib-treated group, patients classified as “good” had a median survival of 207 days whereas those classified as “poor” had a median survival of 92 days. In the erlotinib-treated group, median survivals for “good” and “poor” groups were 306 and 107 days, respectively. The fact that the signature, which was developed from gefitinib-treated patients, also accurately predicted a survival benefit for erlotinib-treated patients buoys Carbone’s confidence in the algorithm, he said, since these two drugs share a common mechanism of action.

The method was not prognostic – it did not predict a survival benefit in three different control groups of patients treated with either chemotherapy or surgery alone.

The investigators are currently working with the Eastern Cooperative Oncology Group to develop a prospective national phase III trial that will test the prediction method’s clinical benefit in lung cancer patients who are just beginning treatment for advanced disease.

“This is a convincing set of data from multiple institutions and multiple cohorts of patients, and we’re excited to test the prediction algorithm in a prospective way,” Carbone said. “If it holds up, we will be able to separate patients into two groups – one that would benefit more from chemotherapy and the other from targeted TKIs – and treat them accordingly. The overall survival of the whole group of patients would be better by virtue of this biomarker-based test.”

Craig Boerner | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>