Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pre-treatment blood test could guide lung cancer therapy

06.06.2007
A multi-center team, led by Vanderbilt-Ingram Cancer Center investigators, has discovered a “signature” of proteins in the blood that predicts which non-small-cell lung cancer patients will live longer when they are treated with certain targeted cancer therapies.

The findings, published June 6 in the Journal of the National Cancer Institute, could one day help physicians decide which lung cancer patients to treat with drugs known collectively as EGF receptor tyrosine kinase inhibitors, a step forward in the era of personalized medicine.

“There’s a real clinical need to identify which patients will benefit from targeted therapies,” said David Carbone, M.D., Ph.D., Harold L. Moses Professor of Cancer Research at Vanderbilt-Ingram and the senior author of the study. “If our findings are confirmed, we will be able to use a simple and inexpensive blood test to select the most beneficial therapy for each patient.”

Targeted cancer therapies are the newest generation of anti-cancer drugs. In contrast to traditional chemotherapy, targeted therapies affect proteins and signaling pathways that are selectively activated in certain malignant cells and not in normal cells. But this selectivity makes these therapies effective only for the subset of patients whose tumors are “driven” by the targeted pathways.

The drawbacks of treating every patient with a targeted therapy include the expense of these drugs, the delay – for those who do not respond – in initiation of effective therapy, and the possibility that some patients will be harmed by the targeted therapy.

In the case of the EGF receptor tyrosine kinase inhibitors (TKIs) gefitinib (Iressa) and erlotinib (Tarceva), studies have demonstrated a survival benefit for 30 to 40 percent of lung cancer patients, but there has been no method for identifying these patients prior to treatment, Carbone said.

Investigators at Vanderbilt-Ingram, the University of Colorado in Aurora, Colo., and Biodesix Inc. in Steamboat Springs, Colo., with worldwide collaborators providing patient samples, set out to determine if a protein profile in the peripheral blood could predict clinical benefit – measured in terms of patient survival – to EGF receptor TKIs.

Using mass spectrometry, the researchers analyzed pre-treatment blood samples from 139 patients who had been treated with gefitinib (three patient cohorts in Italy and Japan), identified a pattern of eight proteins that was correlated with survival, and developed a prediction algorithm.

They then tested the algorithm in two additional groups of patients – 67 gefitinib-treated patients in Italy and 96 erlotinib-treated patients in a U.S. Eastern Cooperative Oncology Group protocol. At the time of the mass spectrometry analysis and classification, the researchers were “blind” to the survival status of the patients.

“We classified the patients as being either likely to benefit (“good”) or not likely to benefit (“poor”) from the TKIs,” Carbone said.

The method was highly successful in predicting a survival benefit. In the gefitinib-treated group, patients classified as “good” had a median survival of 207 days whereas those classified as “poor” had a median survival of 92 days. In the erlotinib-treated group, median survivals for “good” and “poor” groups were 306 and 107 days, respectively. The fact that the signature, which was developed from gefitinib-treated patients, also accurately predicted a survival benefit for erlotinib-treated patients buoys Carbone’s confidence in the algorithm, he said, since these two drugs share a common mechanism of action.

The method was not prognostic – it did not predict a survival benefit in three different control groups of patients treated with either chemotherapy or surgery alone.

The investigators are currently working with the Eastern Cooperative Oncology Group to develop a prospective national phase III trial that will test the prediction method’s clinical benefit in lung cancer patients who are just beginning treatment for advanced disease.

“This is a convincing set of data from multiple institutions and multiple cohorts of patients, and we’re excited to test the prediction algorithm in a prospective way,” Carbone said. “If it holds up, we will be able to separate patients into two groups – one that would benefit more from chemotherapy and the other from targeted TKIs – and treat them accordingly. The overall survival of the whole group of patients would be better by virtue of this biomarker-based test.”

Craig Boerner | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>