Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling the restless brain

05.06.2007
IU neuroscientists tie network structure to brain's spontaneous activity

Indiana University neuroscientists Olaf Sporns and Christopher Honey find the 98 percent of brain activity that other researchers consider just background noise to be fascinating and important.

Brains are always active, even when people are at rest. In this "resting state," waves of neural activity ripple through the brain, creating fluctuating and ever-changing patterns. Sporns and Honey's work on modeling this brain activity sheds new light on how and when these mysterious fluctuations occur and offers insights into what the brain does while idle.

"Some people see the brain in terms of inputs and outputs, like a computer. If you provide an input, you'll get a particular output," said Honey, a doctoral student in IU Bloomington's Department of Psychological and Brain Sciences. "We take a different view. We believe that even in the absence of an external stimulus, there are very important processes going on in the brain which affect the stimulus-responses that the brain will produce. We believe that ongoing spontaneous activity should be studied in itself. Other researchers consider this to be unimportant 'noise' that should be filtered out."

Honey and Sporns, associate professor in the Department of Psychological and Brain Sciences, took a close look at the spontaneous activity of the brain at rest. With their computational approach -- which involved creating a large-scale computer model of the brain of a macaque monkey -- they demonstrated that the shape and pattern of the fluctuations are determined by the brain's wiring diagram, its neuroanatomy.

Their model also can show how slow 5- to 10-second fluctuations of activity emerge naturally from much faster, chaotic neural interactions that typically last only a few milliseconds.

"Our model suggests that the cortical resting state is not time-invariant, but instead contains rich and interrelated temporal structure at multiple time scales that is shaped by the underlying structural topology," Sporns and Honey wrote in an article appearing this week in the Proceedings of the National Academy of Sciences early edition online.

The article, which will be available at http://www.pnas.org/cgi/doi/10.1073/pnas.0701519104, includes a link to a movie that visualizes what spontaneous fluctuations in the monkey's brain would look like. Coauthors of the article are Rolf Kötter, a neuroanatomist at Radboud University in Nijmegen in the Netherlands, and Michael Breakspear, a cognitive neuroscientist at the University of New South Wales in Australia.

When a person reads a book or talks with a friend, task-related neural activity occurs in different regions of the brain, but this activity only accounts for around 2 to 5 percent of the total activity of the brain. Fluctuations of similar magnitude -- the ones studied by Sporns and Honey -- occur when a person is at rest, doing nothing.

The nature of these "resting state fluctuations" is an active topic of research in cognitive neuroscience, with their mysterious origin prompting one prominent researcher to label them the "brain's dark energy," Sporns said. As yet, no one knows why these fluctuations occur or what their function might be.

Sporns and Honey suggest that a closer look at brain structure might provide a new perspective.

Despite the huge amount of work being done by neuroscientists, relatively little is known about how the human brain is structured -- how, for example the hundreds (the number is unknown) of regions in the human brain are connected. The computer model created by Sporns and Honey suggests that this very pattern of connectivity is crucial to generating and shaping brain activity in the resting and active brain.

Empirical work on the human brain is challenging due to the fact that the brain's intricacies cannot simply be manipulated and observed. Sporns and Honey compare studying the brain to studying other complex systems such as cellular metabolism, the economy or global climate change. Models must be used to test theories and generate new insights into how the system works as a whole.

And while technologies such as functional MRI allow scientists to measure some kinds of neural connectivity, neuroinformatics approaches, which use extensive anatomical and physiological data sets to describe the macacque's brain, allowed Sporns and Honey to collect data on all the activity that occurred during their simulations.

Sporns said he wants to create a similar large-scale computer model of the human brain that will allow them to study larger networks and connectivity, once the necessary data sets of how human neural networks are structured are available.

A computational model of the human brain would help researchers better understand where the observed resting state fluctuations come from. It also would let them tie neural activity to cognitive and behavioral performance and ask questions about differences in the brains of individual persons.

Sporns said this research could lead to clinical applications, offering new diagnostic tools for brain disorders such as Alzheimer's disease that are known to affect the brain's connections. It also could help explain why humans do not think alike.

"If fluctuations in brain activity are shaped by anatomy," Sporns said, "then individual differences in the way people think and what they think about could be rooted in differences in the way their brains are connected."

Olaf Sporns | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>