Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling the restless brain

05.06.2007
IU neuroscientists tie network structure to brain's spontaneous activity

Indiana University neuroscientists Olaf Sporns and Christopher Honey find the 98 percent of brain activity that other researchers consider just background noise to be fascinating and important.

Brains are always active, even when people are at rest. In this "resting state," waves of neural activity ripple through the brain, creating fluctuating and ever-changing patterns. Sporns and Honey's work on modeling this brain activity sheds new light on how and when these mysterious fluctuations occur and offers insights into what the brain does while idle.

"Some people see the brain in terms of inputs and outputs, like a computer. If you provide an input, you'll get a particular output," said Honey, a doctoral student in IU Bloomington's Department of Psychological and Brain Sciences. "We take a different view. We believe that even in the absence of an external stimulus, there are very important processes going on in the brain which affect the stimulus-responses that the brain will produce. We believe that ongoing spontaneous activity should be studied in itself. Other researchers consider this to be unimportant 'noise' that should be filtered out."

Honey and Sporns, associate professor in the Department of Psychological and Brain Sciences, took a close look at the spontaneous activity of the brain at rest. With their computational approach -- which involved creating a large-scale computer model of the brain of a macaque monkey -- they demonstrated that the shape and pattern of the fluctuations are determined by the brain's wiring diagram, its neuroanatomy.

Their model also can show how slow 5- to 10-second fluctuations of activity emerge naturally from much faster, chaotic neural interactions that typically last only a few milliseconds.

"Our model suggests that the cortical resting state is not time-invariant, but instead contains rich and interrelated temporal structure at multiple time scales that is shaped by the underlying structural topology," Sporns and Honey wrote in an article appearing this week in the Proceedings of the National Academy of Sciences early edition online.

The article, which will be available at http://www.pnas.org/cgi/doi/10.1073/pnas.0701519104, includes a link to a movie that visualizes what spontaneous fluctuations in the monkey's brain would look like. Coauthors of the article are Rolf Kötter, a neuroanatomist at Radboud University in Nijmegen in the Netherlands, and Michael Breakspear, a cognitive neuroscientist at the University of New South Wales in Australia.

When a person reads a book or talks with a friend, task-related neural activity occurs in different regions of the brain, but this activity only accounts for around 2 to 5 percent of the total activity of the brain. Fluctuations of similar magnitude -- the ones studied by Sporns and Honey -- occur when a person is at rest, doing nothing.

The nature of these "resting state fluctuations" is an active topic of research in cognitive neuroscience, with their mysterious origin prompting one prominent researcher to label them the "brain's dark energy," Sporns said. As yet, no one knows why these fluctuations occur or what their function might be.

Sporns and Honey suggest that a closer look at brain structure might provide a new perspective.

Despite the huge amount of work being done by neuroscientists, relatively little is known about how the human brain is structured -- how, for example the hundreds (the number is unknown) of regions in the human brain are connected. The computer model created by Sporns and Honey suggests that this very pattern of connectivity is crucial to generating and shaping brain activity in the resting and active brain.

Empirical work on the human brain is challenging due to the fact that the brain's intricacies cannot simply be manipulated and observed. Sporns and Honey compare studying the brain to studying other complex systems such as cellular metabolism, the economy or global climate change. Models must be used to test theories and generate new insights into how the system works as a whole.

And while technologies such as functional MRI allow scientists to measure some kinds of neural connectivity, neuroinformatics approaches, which use extensive anatomical and physiological data sets to describe the macacque's brain, allowed Sporns and Honey to collect data on all the activity that occurred during their simulations.

Sporns said he wants to create a similar large-scale computer model of the human brain that will allow them to study larger networks and connectivity, once the necessary data sets of how human neural networks are structured are available.

A computational model of the human brain would help researchers better understand where the observed resting state fluctuations come from. It also would let them tie neural activity to cognitive and behavioral performance and ask questions about differences in the brains of individual persons.

Sporns said this research could lead to clinical applications, offering new diagnostic tools for brain disorders such as Alzheimer's disease that are known to affect the brain's connections. It also could help explain why humans do not think alike.

"If fluctuations in brain activity are shaped by anatomy," Sporns said, "then individual differences in the way people think and what they think about could be rooted in differences in the way their brains are connected."

Olaf Sporns | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>