Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress in pregnancy may affect the unborn child

31.05.2007
Stress experienced by a woman during pregnancy may have an effect on her unborn child, most likely mediated by the transfer of stress hormones across the placenta. Research published in May’s edition of Clinical Endocrinology shows that from 17 weeks of age, the amount of stress hormone in the amniotic fluid surrounding the fetus is positively related to that in the mother’s blood. This is the first report of this relationship noted at such an early stage in pregnancy.

Stress hormones are pumped into our blood when we become anxious. These hormones are good in the short term because they help our bodies deal with the present stressful situation. But if we are stressed for a long time they can affect our health including making us tired, depressed and more prone to illness. Although we know stress during pregnancy affects the unborn child, little is understood about the mechanisms behind this or when in development the child is most susceptible to these effects.

Researchers led by Prof Vivette Glover at Imperial College London and Dr Pampa Sarkar at Wexham Park Hospital Berkshire examined the relationship between the stress hormones in the mother’s blood and stress hormones present in the amniotic fluid around the baby in the womb. They studied 267 women, taking a blood sample from the mother and a sample from the amniotic fluid surrounding the baby. They then measured the levels of a stress hormone called cortisol present in both samples. At gestational age of 17 weeks or greater, they found that the higher the cortisol levels in the mother’s blood, the greater was the level of cortisol in the amniotic fluid. Amniotic fluid is predominantly produced by the fetus, and reflects the exposure of the fetus to various substances including hormones.

Recent work on animals shows that high levels of stress in the mother during pregnancy can affect brain function and behaviour in her offspring. While evidence in the scientific literature suggests that maternal stress in humans can affect the developing child, the mechanisms and period of time when the fetus is susceptible is still unclear. This is the first study to show that maternal stress may affect the unborn child as early as 17 weeks in development. More work is now needed to better understand the mechanisms of this relationship and the implications to the unborn child.

Researcher Dr Pampa Sarkar said:

“We are all a product of our developmental history. One of the times when we are most susceptible to the influences of our surrounding environment is when we are developing as a fetus in our mother’s womb. Our research shows that the fetus is exposed to cortisol in the maternal blood, and we also demonstrated that at and above 17 weeks, the cortisol in amniotic fluid had a strong positive relationship with cortisol in maternal blood. We found that the strength of this correlation became stronger with increasing gestational age.

We now need to carry out further work to unravel the mechanisms by which maternal stress affects the fetus, both during fetal life and through into childhood. We do not wish to unduly worry pregnant women. It should be remembered that one of the best ways for people to avoid general stress is to lead a healthy, balanced lifestyle.”

Jennie Evans | alfa
Further information:
http://www.endocrinology.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>