Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading the fight against food poisoning

24.05.2007
University of Nottingham experts have joined forces with Canadian biotech company GangaGen Life Sciences Inc to develop new weapons in the fight against food poisoning.

They are engaging in a major research project to develop methods for the control of Campylobacter — the commonest cause of infectious bacterial intestinal disease in England and Wales, according to the Health Protection Agency. Campylobacters are found in poultry and other animals and cause millions of cases of food poisoning worldwide.

The researchers intend to develop bacteriophage-based treatments for the control of Campylobacter.

Bacteriophages — the term literally means ‘bacterium-eater’ — are naturally occurring agents that target and destroy bacteria with a high degree of efficiency, and do so selectively and specifically, without affecting beneficial bacteria or gut cells. The term is commonly used in its shortened form, phage.

Both GangaGen and The University of Nottingham are leaders in bacteriophage research and view the technology as a vital breakthrough in the control of bacterial contamination and associated health risks. The research agreement, announced today [May 22], will mean they pool their resources for at least three years to develop new treatments.

Ian Connerton, Northern Foods Professor of Food Safety at The University of Nottingham, said: “We are excited to be working with a company like GangaGen that is at the forefront of phage technology development.

“Our team’s research has demonstrated that certain phages specific for Campylobacter can significantly reduce the load of the bacteria carried by poultry. By implication, this should also reduce the risk to consumers by decreasing bacterial contamination of meat that is prevalent in poultry processing and is transferred to chicken meat on grocery shelves.”

GangaGen and The University of Nottingham are building a business relationship to commercialise phage technology which has been developed at the University to complement the existing phage expertise of GangaGen. This is part of the University's programme to transfer technology from academia into the commercial world.

Campylobacter infection is typically characterised by severe diarrhoea and abdominal pain, stomach cramps, fever and vomiting. Undercooked meat, particularly poultry, is often associated with the illness, and it is impossible to tell from its appearance whether it is contaminated — as it looks, tastes and smells normal.

GangaGen is a developer of therapeutics based on phage technology for the control of disease-causing bacteria. The company is developing a portfolio of products for the effective treatment of infectious disease in human and animal health. Its animal health program includes innovations for the control of food-safety hazards associated with the transfer of pathogenic bacteria from animal production to consumers.

The work on a phage product for the control of Campylobacter will complement GangaGen’s food safety product portfolio, which also includes phage products against Salmonella and E. coli O157:H7.

Dr Rainer Engelhardt, Chief Executive of GangaGen Life Sciences Inc, said: “GangaGen believes that the place to start fighting food safety-related bacteria is at the farm where livestock production takes place, and this research agreement with The University of Nottingham allows us to continue building on that belief.

“The food industry and its regulators have stated that they believe that timely intervention is needed at the farm level to supplement the extensive, but not fully effective, controls already in place in food processing. GangaGen has demonstrated in production animal trials that we can isolate and use phages with full regard for safety, and that are benign to animals, humans and the environment.

“This research agreement is of great importance to the health market in general. The combination of these two research teams provides strong impetus for creating a safe, effective and low-cost solution to this pernicious consumer health risk.”

Food-safety authorities in Europe and in North America recently released data showing that the contamination hazard due to Campylobacter remains high, and may be increasing because the pathogen has also started to demonstrate resistance to several common antibiotics.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>