Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomedicine Opens the Way for Nerve Cell Regeneration

22.05.2007
Two Research Groups Present Results at NSTI Nanotech 2007

The ability to regenerate nerve cells in the body could reduce the effects of trauma and disease in a dramatic way. In two presentations at the NSTI Nanotech 2007 Conference, researchers describe the use of nanotechnology to enhance the regeneration of nerve cells. In the first method, developed at the University of Miami, researchers show how magnetic nanoparticles (MNPs) may be used to create mechanical tension that stimulates the growth and elongation of axons of the central nervous system neurons. The second method from the University of California, Berkeley uses aligned nanofibers containing one or more growth factors to provide a bioactive matrix where nerve cells can regrow.

It is known that injured neurons in the central nervous system (CNS) do not regenerate, but it is not clear why. Adult CNS neurons may lack an intrinsic capacity for rapid regeneration, and CNS glia create an inhibitory environment for growth after injury. Can these challenges be overcome even before we fully understand them at a molecular level “why axons in central nervous system do not regenerate?” Dr. Mauris N. De Silva describes the novel nanotechnology based approach designed that includes the use of magnetic nanoparticles and magnetic fields for addressing the challenges associated with regeneration of central nervous system after injury. “By providing mechanical tension to the regrowing axon, we may be able to enhance the regenerative axon growth in vivo”. This mechanically induced neurite outgrowth may provide a possible method for bypassing the inhibitory interface and the tissue beyond a CNS related injury. Using optic nerve and spinal cord tissues as in vivo models and dissociated retinal ganglion neurons as an in vitro model, De Silva and his colleagues are currently investigating how these magnetic nanoparticles can be incorporated into neurons and axons at the site of injury. Although, this study is at a very preliminary stage to explore the possibility of using magnetic nanoparticles for enhancing in vivo axon regeneration, this work may have significant implications for the treatment of spinal cord injuries, and is a vital “next step” in bringing this new technology to clinical use.

The second presentation focuses on peripheral nerve injury, which affects 2.8% of all trauma patients and quite often results in lifelong disability. Since peripheral nerves relay signals between the brain and the rest of the body, injury to these nerves results in loss of sensory and motor function. Upper extremity paralysis alone affects more than 300,000 individuals annually in the US. The most serious form of peripheral nerve injury is complete severance of the nerve. The severed nerve can regenerate; the nerve fibers from the nerve end closest to the spinal cord have to grow across the injury gap, enter the other nerve segment and then work their way through to their end targets (skin, muscle, etc). Usually, when the gap between the severed nerve endings is larger than a few millimeters, the nerve does not regenerate on its own. If left untreated, the end result is permanent sensory and motor paralysis. A few hundred thousand people suffer from this debilitating condition annually in the US.

Currently, the most successful form of treatment is to take a section of healthy nerve (autograft) from another part of the patient’s body to bridge the damaged one. This autograft then serves as a guide for nerve fibers to cross the injury gap. Although successful, this autograft procedure has major drawbacks including loss of function at the donor site, multiple surgeries and, quite often, it’s just not possible to find a suitable nerve to use as a graft. Various synthetic nerve grafts are currently available but none work better than the autograft and can’t bridge gaps larger than 4 centimeters.

Researchers at the University of California, Berkeley have developed a technology that has the potential to serve as a better alternative than currently available synthetic nerve grafts. The graft material is composed entirely of aligned nanoscale polymer fibers. These polymer fibers act as physical guides for regenerating nerve fibers. They have also developed a way to make these aligned nanofibers bioactive by attaching various biochemicals directly onto the surfaces of the nanofibers. Thus, the bioactive aligned nanofiber technology mimics the nerve autograft by providing both physical and biochemical cues to enhance and direct nerve growth.

This technology has been tested by culturing rat nerve tissue ex vivo on our bioactive aligned nanofiber scaffolds. When the nerve tissue was cultured on unaligned nanofibers there was no nerve fiber growth onto the scaffolds. However, on aligned nanofiber scaffolds, they not only observed nerve fibers growing from the tissue but the nerve fibers were aligned in the same orientation as the nanofibers. Furthermore, when there were biochemicals present on the nanofibers, the nerve fiber growth was enhanced 5 fold. In a matter of just 5 days, nerve fibers had extended 4 millimeters from the nerve tissue in a bipolar fashion on the bioactive aligned nanofiber scaffolds. Thus, this technology can induce, enhance and direct nerve fiber regeneration in a straight and organized manner.

In order to make the technology clinically viable, they have also developed a novel graft fabrication technology in their laboratory. The most common method for fabricating polymer nanofibers is to use an electrical field to “spin” very thin fibers. This technique is called electrospinning and can be used to make nanofiber scaffolds in various shapes such as sheets and tubes. They have made a key innovation to this technology that enables us to fabricate tubular nerve grafts composed entirely of polymer nanofibers aligned along the length of tubes. This technology also allows customization of the length, diameter and thickness of the aligned tubular nanofiber grafts. The group will evaluate the performance of these aligned nanofiber nerve grafts in small animal pre-clinical studies starting in mid-May.

The technology presented herein is being patented by the University of California, Berkeley and has been licensed to NanoNerve, Inc.

According to Principal Investigator, Shyam Patel, “Speed is the key to successful nerve regeneration. Our aligned nanofiber technology takes full advantage of the fact that the shortest distance between damaged nerve endings is a straight line. It directs straightforward nerve growth and never lets them stray from the fast lane.”

The presentation on magnetic nanoparticles is “Developing Super-Paramagnetic Nanoparticles for Central Nervous System Axon Regeneration” by M.N. De Silva, M.V. Almeida and J.L. Goldberg, from the University of Miami. The talk on aligned nanofibers is “Bioactive Aligned Nanofibers for Nerve Regeneration” by S. Patel and S. Li, from the University of California, Berkeley, CA. Both will be given on May 24, 2007 at the NSTI Nanotech 2007 conference in Santa Clara, CA, at 2:10 PM and 2:50 PM, respectively, both in Grand Ballroom D of the Santa Clara Convention Center.

The mission of Nanomedicine: Nanotechnology, Biology & Medicine, the international peer-reviewed journal published by Elsevier, is to communicate new nanotechnology findings, and encourage collaboration among the diverse disciplines represented in nanomedicine. Because this closely mirrors NSTI’s charter to seek the “promotion and integration of nano and other advanced technologies through education, technology and business development,” Elsevier is pleased to be working in collaboration with NSTI to bring this presentation to the attention of the scientific community.

Jami Walker | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>