Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanomedicine Opens the Way for Nerve Cell Regeneration

Two Research Groups Present Results at NSTI Nanotech 2007

The ability to regenerate nerve cells in the body could reduce the effects of trauma and disease in a dramatic way. In two presentations at the NSTI Nanotech 2007 Conference, researchers describe the use of nanotechnology to enhance the regeneration of nerve cells. In the first method, developed at the University of Miami, researchers show how magnetic nanoparticles (MNPs) may be used to create mechanical tension that stimulates the growth and elongation of axons of the central nervous system neurons. The second method from the University of California, Berkeley uses aligned nanofibers containing one or more growth factors to provide a bioactive matrix where nerve cells can regrow.

It is known that injured neurons in the central nervous system (CNS) do not regenerate, but it is not clear why. Adult CNS neurons may lack an intrinsic capacity for rapid regeneration, and CNS glia create an inhibitory environment for growth after injury. Can these challenges be overcome even before we fully understand them at a molecular level “why axons in central nervous system do not regenerate?” Dr. Mauris N. De Silva describes the novel nanotechnology based approach designed that includes the use of magnetic nanoparticles and magnetic fields for addressing the challenges associated with regeneration of central nervous system after injury. “By providing mechanical tension to the regrowing axon, we may be able to enhance the regenerative axon growth in vivo”. This mechanically induced neurite outgrowth may provide a possible method for bypassing the inhibitory interface and the tissue beyond a CNS related injury. Using optic nerve and spinal cord tissues as in vivo models and dissociated retinal ganglion neurons as an in vitro model, De Silva and his colleagues are currently investigating how these magnetic nanoparticles can be incorporated into neurons and axons at the site of injury. Although, this study is at a very preliminary stage to explore the possibility of using magnetic nanoparticles for enhancing in vivo axon regeneration, this work may have significant implications for the treatment of spinal cord injuries, and is a vital “next step” in bringing this new technology to clinical use.

The second presentation focuses on peripheral nerve injury, which affects 2.8% of all trauma patients and quite often results in lifelong disability. Since peripheral nerves relay signals between the brain and the rest of the body, injury to these nerves results in loss of sensory and motor function. Upper extremity paralysis alone affects more than 300,000 individuals annually in the US. The most serious form of peripheral nerve injury is complete severance of the nerve. The severed nerve can regenerate; the nerve fibers from the nerve end closest to the spinal cord have to grow across the injury gap, enter the other nerve segment and then work their way through to their end targets (skin, muscle, etc). Usually, when the gap between the severed nerve endings is larger than a few millimeters, the nerve does not regenerate on its own. If left untreated, the end result is permanent sensory and motor paralysis. A few hundred thousand people suffer from this debilitating condition annually in the US.

Currently, the most successful form of treatment is to take a section of healthy nerve (autograft) from another part of the patient’s body to bridge the damaged one. This autograft then serves as a guide for nerve fibers to cross the injury gap. Although successful, this autograft procedure has major drawbacks including loss of function at the donor site, multiple surgeries and, quite often, it’s just not possible to find a suitable nerve to use as a graft. Various synthetic nerve grafts are currently available but none work better than the autograft and can’t bridge gaps larger than 4 centimeters.

Researchers at the University of California, Berkeley have developed a technology that has the potential to serve as a better alternative than currently available synthetic nerve grafts. The graft material is composed entirely of aligned nanoscale polymer fibers. These polymer fibers act as physical guides for regenerating nerve fibers. They have also developed a way to make these aligned nanofibers bioactive by attaching various biochemicals directly onto the surfaces of the nanofibers. Thus, the bioactive aligned nanofiber technology mimics the nerve autograft by providing both physical and biochemical cues to enhance and direct nerve growth.

This technology has been tested by culturing rat nerve tissue ex vivo on our bioactive aligned nanofiber scaffolds. When the nerve tissue was cultured on unaligned nanofibers there was no nerve fiber growth onto the scaffolds. However, on aligned nanofiber scaffolds, they not only observed nerve fibers growing from the tissue but the nerve fibers were aligned in the same orientation as the nanofibers. Furthermore, when there were biochemicals present on the nanofibers, the nerve fiber growth was enhanced 5 fold. In a matter of just 5 days, nerve fibers had extended 4 millimeters from the nerve tissue in a bipolar fashion on the bioactive aligned nanofiber scaffolds. Thus, this technology can induce, enhance and direct nerve fiber regeneration in a straight and organized manner.

In order to make the technology clinically viable, they have also developed a novel graft fabrication technology in their laboratory. The most common method for fabricating polymer nanofibers is to use an electrical field to “spin” very thin fibers. This technique is called electrospinning and can be used to make nanofiber scaffolds in various shapes such as sheets and tubes. They have made a key innovation to this technology that enables us to fabricate tubular nerve grafts composed entirely of polymer nanofibers aligned along the length of tubes. This technology also allows customization of the length, diameter and thickness of the aligned tubular nanofiber grafts. The group will evaluate the performance of these aligned nanofiber nerve grafts in small animal pre-clinical studies starting in mid-May.

The technology presented herein is being patented by the University of California, Berkeley and has been licensed to NanoNerve, Inc.

According to Principal Investigator, Shyam Patel, “Speed is the key to successful nerve regeneration. Our aligned nanofiber technology takes full advantage of the fact that the shortest distance between damaged nerve endings is a straight line. It directs straightforward nerve growth and never lets them stray from the fast lane.”

The presentation on magnetic nanoparticles is “Developing Super-Paramagnetic Nanoparticles for Central Nervous System Axon Regeneration” by M.N. De Silva, M.V. Almeida and J.L. Goldberg, from the University of Miami. The talk on aligned nanofibers is “Bioactive Aligned Nanofibers for Nerve Regeneration” by S. Patel and S. Li, from the University of California, Berkeley, CA. Both will be given on May 24, 2007 at the NSTI Nanotech 2007 conference in Santa Clara, CA, at 2:10 PM and 2:50 PM, respectively, both in Grand Ballroom D of the Santa Clara Convention Center.

The mission of Nanomedicine: Nanotechnology, Biology & Medicine, the international peer-reviewed journal published by Elsevier, is to communicate new nanotechnology findings, and encourage collaboration among the diverse disciplines represented in nanomedicine. Because this closely mirrors NSTI’s charter to seek the “promotion and integration of nano and other advanced technologies through education, technology and business development,” Elsevier is pleased to be working in collaboration with NSTI to bring this presentation to the attention of the scientific community.

Jami Walker | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>