Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transplanting human gut bugs into mice helps understanding of metabolic system

Bugs found in the guts of humans, which play an important part in people’s metabolic makeup, have been transplanted into mice to further understanding of the human and animal metabolic system, reveals a new study in the journal Molecular Systems Biology.

Bugs in the gut are known as gut microbes and they live symbiotically in human and animal bodies. The new study involved understanding the major role that gut microbes have in determining how the body absorbs fat and digests fibre, and their effects on metabolic pathways in the body.

The researchers, from Imperial College London and Nestlé Research Center, Lausanne, Switzerland, found that microbes affect the way fats are absorbed and metabolised, by affecting bile acids. Bile acids are made by the liver to allow emulsification of fats in the upper gut. The researchers found that gut microbes can change how effective this emulsification process is because they metabolise bile acids.

The bile acids are also hormonal regulators which change the way fat is processed in the liver, so changes made by gut microbes to bile acid metabolism can affect this internal process.

The scientists also explored how microbes break down fibre in the lower gut. Certain microbes allow dietary fibre to be digested and the more effective these microbes are, the more calories are absorbed from the diet.

Different people have different types of gut microbes living inside them and abnormalities in some types have recently been linked to diseases such as diabetes and obesity. The scientists believe that transplanting the bugs found in humans into mice will enable better understanding of gut microbes’ effects, good and bad, and help them to develop better treatments (including probiotics and functional foods) for a wide range of conditions.

Professor Jeremy Nicholson, one of the lead authors of the paper from the Department of Biomolecular Medicine at Imperial College London, said: “Humans carry around 1.5kg of bacteria inside of us – that’s the same sort of weight as your liver, so they have a big metabolic effect on our bodies. By transplanting human gut microbes into mice, scientists from Nestlé Research Center, Lausanne were able to make them partially human from a metabolic point of view, because we made their biochemistry more like ours. This makes studies on mice much more relevant to human problems.

“We found that the humanised mice had very different metabolic profiles to normal mice with respect to the metabolism of fats and in future we might be able to modify their metabolism using probiotics, like those found in some natural yoghurts. This gives us a new way of studying the beneficial effects of probiotics and functional foods and understanding what they do to our “friendly” bacteria. Our new approach allows us to explore which bugs are doing what in metabolic terms, to identify which bugs which might be causing chronic health problems, and investigate what effects different foods and probiotics can have on improving overall health,” he added.

Laura Gallagher | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>