Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics and alcohol consumption

21.05.2007
Specialists from the Research Institute of Medical Genetics, Russian Academy of Medical Sciences (Tomsk), have found that some variants of the genes responsible for ethanol metabolism impact on blood pressure and lipidic exchange, and raise the risk of coronary atherosclerosis in studies of the Russian population of Western Siberia. However, this does not mean that genes’ influence on the cardiovascular system is directly connected with ethanol metabolism.

For years, physicians have assumed that alcohol abuse leads to cardiovascular diseases. However, other data has also appeared recently, in which moderate doses of alcohol resist initiation of these diseases, particularly coronary heart disease. On the one hand, ethanol increases arterial pressure, concentrating fatty acids and urea in the blood. On the other hand, ethanol decreases cholesterol and encourages blood protein coagulation and thrombi formation.

The action of alcohol ingested largely depends on its concentration in the blood. About 90 percent of ethanol is decomposed in the liver, with several enzymes participating in the process: alcohol dehydrogenases, acetaldehyde dehydrogenases, 2'1-class '450 cytochromes and some others. Diversity in the sequences of these enzymes’ genes, or their genetic polymorphism impacts the ethanol disintegration rate and the diseases connected with its abuse, as well as predisposition to cardiovascular diseases. For example, certain mutations in the alcohol dehydrogenase genes with Japanese men allow to oxidize ethanol 100 to 200 times quicker. Therefore, polymorphism of the genes participating in ethanol disintegration should tell upon the cardiovascular system state.

The Tomsk geneticists examined a group of patients with a diagnosis of ischemic cardiac disease and coronary atherosclerosis. The reference group consisted of practically healthy inhabitants of Tomsk. All participants to the experiment were examined from the point of view of cardiovascular system state and polymorphism of several genes: two genes of alcohol dehydrogenase (ADH1B and ADH7) and 'YP2'1 cytochrome gene.

The researchers found mutant variants of these genes, which influence blood pressure, fatty acids and lipoproteins concentration. The same genes determine the ethanol disintegration rate. The researchers assume that the genes’ influence on lipidic exchange and blood pressure is unconnected with the ethanol disintegration function. It is probable that the enzymes, whose operation is determined by these genes, perform several functions. However, these genes can probably be used as markers of alcoholic dependence.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>