Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics and alcohol consumption

21.05.2007
Specialists from the Research Institute of Medical Genetics, Russian Academy of Medical Sciences (Tomsk), have found that some variants of the genes responsible for ethanol metabolism impact on blood pressure and lipidic exchange, and raise the risk of coronary atherosclerosis in studies of the Russian population of Western Siberia. However, this does not mean that genes’ influence on the cardiovascular system is directly connected with ethanol metabolism.

For years, physicians have assumed that alcohol abuse leads to cardiovascular diseases. However, other data has also appeared recently, in which moderate doses of alcohol resist initiation of these diseases, particularly coronary heart disease. On the one hand, ethanol increases arterial pressure, concentrating fatty acids and urea in the blood. On the other hand, ethanol decreases cholesterol and encourages blood protein coagulation and thrombi formation.

The action of alcohol ingested largely depends on its concentration in the blood. About 90 percent of ethanol is decomposed in the liver, with several enzymes participating in the process: alcohol dehydrogenases, acetaldehyde dehydrogenases, 2'1-class '450 cytochromes and some others. Diversity in the sequences of these enzymes’ genes, or their genetic polymorphism impacts the ethanol disintegration rate and the diseases connected with its abuse, as well as predisposition to cardiovascular diseases. For example, certain mutations in the alcohol dehydrogenase genes with Japanese men allow to oxidize ethanol 100 to 200 times quicker. Therefore, polymorphism of the genes participating in ethanol disintegration should tell upon the cardiovascular system state.

The Tomsk geneticists examined a group of patients with a diagnosis of ischemic cardiac disease and coronary atherosclerosis. The reference group consisted of practically healthy inhabitants of Tomsk. All participants to the experiment were examined from the point of view of cardiovascular system state and polymorphism of several genes: two genes of alcohol dehydrogenase (ADH1B and ADH7) and 'YP2'1 cytochrome gene.

The researchers found mutant variants of these genes, which influence blood pressure, fatty acids and lipoproteins concentration. The same genes determine the ethanol disintegration rate. The researchers assume that the genes’ influence on lipidic exchange and blood pressure is unconnected with the ethanol disintegration function. It is probable that the enzymes, whose operation is determined by these genes, perform several functions. However, these genes can probably be used as markers of alcoholic dependence.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>