Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How insulin-producing cells develop: new finding could help fight against diabetes

21.05.2007
A key aspect of how embryos create the cells which secrete insulin is revealed in a new study published tomorrow (18 May) in the Journal of Biological Chemistry. The researchers hope that their findings will enable the development of new therapies for diabetes, a condition caused by insufficient levels of insulin.

The research reveals that glucose plays a key role in enabling healthy beta cells, which secrete insulin, to develop in the pancreas of an embryo. Glucose prompts a gene called Neurogenin3 to switch on another gene, known as NeuroD, which is crucial for the normal development of beta cells. If glucose levels are low this gene is not switched on.

Insulin is the principal hormone that regulates the uptake of glucose and if the beta cells are unable to produce sufficient insulin, this can cause diabetes.

The scientists, from Imperial College London and an INSERM Unit at Necker Hospital, Paris, hope that understanding how to switch on the gene that produces beta cells could eventually enable researchers to create these cells from stem cells. They could then transplant beta cells into patients with type 1 diabetes. In this type of diabetes the immune system attacks patients' beta cells and at the moment few patients with the condition are able to have beta cell transplants, because the cells have to be taken from deceased donors.

The researchers also hope that scientists will be able to develop drug therapies that enhance the action of glucose and hence encourage the growth of healthy beta cells.

Professor Guy Rutter, from the Division of Medicine at Imperial College and one of the authors of the paper, said: "We hope that by demonstrating that an 'extrinsic' factor like glucose can regulate the way in which insulin secreting cells develop we may eventually be able to reverse defects in the growth of these cells in patients with diabetes. Research like ours is opening up whole new sets of targets for drug treatments."

The researchers reached their conclusions after conducting research on tissues cultured from the primordial pancreas of very young rat embryos. Using an in vitro system, rather than looking at cells in vivo, enables researchers to gain a greater understanding of when and how different genes are being switched on.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>