Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights into the Disease Mechanism of Vasculitis. Potential Target for Specific Therapy

16.05.2007
A potential therapeutic target for autoimmune vasculitis has been identified by researchers of the Franz Volhard Clinic for Cardiovascular Diseases (FVK) of the Charité – University Medicine Berlin/HELIOS-Klinikum and the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch.

They discovered that a specific surface receptor (NB1) mediates the expression of a molecule (autoantigen) on the surface of certain white blood cells, where the immune system recognizes and binds it. This reaction starts the inflammation process. Thus, NB1 is a potential drug target for ANCA-associated vasculitis, as Dr. Sibylle von Vietinghoff (FVK), Professor Friedrich Luft (FVK, MDC) and Professor Ralph Kettritz (FVK) report in the American journal Blood (Vol. 109, No. 10, pp. 4487-4493, May 15, 2007)*.

Autoimmune vasculitis is a broad term encompassing a group of disorders characterized by blood vessel inflammation. It is triggered by antibodies formed by the immune system which are no longer able to distinguish between “self” and “non-self”. The antibodies target the most common white blood cells, the neutrophil granulocytes, or more precisely an enzyme that is normally found in the cell plasma of these blood cells, proteinase 3 (PR3).

Neutrophil granulocytes are part of the immune system, and their primary function is to attack viruses and bacteria. In the cell plasma of all neutrophil granulocytes, the enzyme proteinase 3 (PR3) is present. PR3 plays a role in one form of vasculitis because it elicits the formation of autoantibodies. These antibodies are therefore called ANCA (antineutrophil cytoplasmatic autoantibodies).

However, ANCA autoantibodies only attack the white blood cells which “display” the enzyme PR3 on their surface. The blood cells which retain the enzyme inside the cell away from the cell surface avoid the attack of the autoantibodies. The binding of the ANCA antibodies to the PR3 localized on the cell membrane activates the white blood cells, which thereupon attack the body’s own structures and trigger the inflammation processes in the blood vessels. The resulting inflammation can affect any and all organs and become life-threatening.

Receptor protein

Prior to this study it was not known how the enzyme is presented on the membrane surface of the blood cells. Dr. von Vietinghoff and her colleagues in Berlin-Buch were able to show that it has a “helper” presenting it on the surface of the blood cells: the membrane anchor protein NB1 (CD177). For their study they tested and compared blood samples obtained from 200 healthy volunteer donors and patients with ANCA vasculitis. The researchers discovered that the enzyme PR3 and the receptor NB1 were more often found on the surfaces of blood cells in patients with ANCA vasculitis. Using molecular techniques the researchers were able to prove that NB1 is necessary for PR3 membrane presentation.

Aim – Development of a specific therapy

NB1 therefore appears to be a promising therapeutic target, according to Sibylle von Vietinghoff, Ralph Kettritz and Friedrich Luft. Although today there are treatments for vasculitis and related disorders such as Wegener’s granulomatosis, a rare but serious disease which affects all body organs including the kidneys, currently used drugs suppress the entire immune system. The disadvantage is that this makes patients more vulnerable to infection.

With unspecific immune therapy and dialysis, the kidneys of the affected patients often recover their function. “It is one of the few kidney diseases in which patients are able to come off dialysis,” Ralph Kettritz said. But a risk of recurrence always remains. If NB1 could be inhibited and PR3 expression on the blood cell surfaces prevented, vasculitis could be better controlled or even cured and recurrences avoided. “That is why our findings provide hope for patients with vasculitis,” he said. “A specific therapy approach based on our study may hold the key to overcoming the disease.”

Barbara Bachtler | alfa
Further information:
http://bloodjournal.hematologylibrary.org/

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>