Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students’ product could reduce spread of infections like MRSA

15.05.2007
A product designed by two entrepreneurial medical graduates could soon be helping to reduce the spread of hospital-acquired infections such as MRSA.

The pair have designed a disposable tourniquet which they believe will pose no infection risk and which they hope will provide a cheap, comfortable alternative to the tourniquets currently in use. They estimate that it will cost the same to manufacture as a rubber glove, which is frequently used as a make-shift tourniquet. They developed the product whilst studying at Imperial College London.

Tourniquets are essential in helping medical staff find a vein when they are taking blood samples or inserting a drip. They are wrapped around limbs and tightened, restricting blood flow so that the veins swell and become more visible.

The designers of the new product suggest that most of the tourniquets currently in use pose an infection risk because they are reusable and could therefore carry infective organisms from patient to patient. Disposable alternatives do exist but the pair believes these are largely expensive and lack ease of use. For expediency, many medical professionals currently use a rubber glove, but these are often uncomfortable and can cause problems such as latex allergies or trauma to the skin. Around 40 million procedures using a tourniquet are performed each year in the NHS alone.

The tourniquet invented by the Imperial students, which is named Tournistrip (TM), is a long band made of a form of plasticized paper with similar dimensions to a watch strap. It is fastened using a quick seal, quick release sticking mechanism and its origins are based on wrist bands used for security at large events such as concerts. This means that the team has been able to use existing production techniques for such bands to keep costs low.

Ryan Kerstein, one of the inventors of the device, who qualified as a doctor from Imperial College in 2006 said: "Throughout our training there was always a lot of emphasis on infection control and good clinical technique. Watching some of our colleagues in the hospital environment it struck us that even though their technique was stringent they were limited by the re-usable equipment available.”

Ryan's co-inventor Christian Fellowes, also a recently qualified doctor from Imperial, added: "We came up with the idea when on the wards, as medical students, we saw tourniquets being transferred from patient to patient, which we felt was unacceptable. The only available alternative was a rubber glove, which seemed unprofessional and uncomfortable. Looking into the problem, we realised there were no financially viable alternatives that had the benefits of re-usable tourniquets, without the drawbacks of the available disposable ones. We developed a product that is easy and comfortable for patients, as it does not pinch, is easy to fasten and release, and is cheap and brandable."

The graduates developed their idea after carrying out a small study on the infective organisms present in reusable tourniquets, with the help of Dr Berge Azadian from Imperial’s Division of Investigative Sciences. In an examination of 52 reusable tourniquets, they found that 30 grew methicillin-sensitive Staphylococcus aureus (MSSA) and three grew methicillin-resistant Staphylococcus aureus (MRSA).

The students were finalists in the Imperial Business Plan Competition in 2005 and won the Imperial College Innovation Competition in 2004.

The team have a patent pending on their design and prototypes of the tourniquet have been successfully tested in various London teaching hospitals. Imperial Innovations, the technology commercialisation company based at Imperial College London, is assisting the team in bringing their product to market. The most likely route for this is by a licence with a manufacturer of hospital supplies.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk
http://www.imperialinnovations.co.uk

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>