Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapeutic targets for neurodegenerative diseases

11.05.2007
The focus of work in the Neurosciences Department’s Neurobiology Laboratory at the University of the Basque Country’s Faculty of Medicine and Odontology is the investigation of the molecular and cellular bases of neurodegenerative illnesses – those that affect the brain and the spinal cord. Some of these neurodegenerative illnesses are well known and affect a significant part of the population, such as Alzheimer’s disease and multiple sclerosis.

Researchers at the University of the Basque Country (UPV-EHU) are studying the signals in the central nervous system - the brain and the spinal cord - that do not function well, in particular, those signals that cause the death of nerve cells. There are basically two types of cells in the central nervous system: neurones and the glial cells. Both types are sensitive to these functioning errors and both can die. In the case of Alzheimer’s disease, it is the neurones, above all, that die. However, in the case of multiple sclerosis, it is a class of glial cells – known as oligodendrocytes – that perish.

From in vitro cells to biological samples of human origin

The researchers at the Neurobiology Laboratory are investigating cells in cultures - neurones, oligodendrocytes or other cells of the nervous system -, and are trying to reproduce in vitro circumstances that are thought to be relevant in these ailments. That is to say, they are creating the conditions that cause the death of these cells, in order to determine what molecules intervene in the process – from the moment of the lethal signal to the point where the cells collapse. In this type of experimental work a series of molecules involved in the death process are identified, the aim being to come up with pharmaceutical medicines that will improve treatment.

Apart from working with in vitro cells, they are also experimenting with animals that reproduce some of the elements involved in neurodegenerative illnesses under certain conditions, i.e. sensory symptoms, motor symptoms, etc. and that can be induced in these animals. And they are examining if these substances that have proved to be interesting with the in vitro cells are also efficacious in these experimental models of the diseases.

Moreover, over the past few years they have had the opportunity to study samples of brains of patients who have died of some neurodegenerative illness, such as, for example, multiple sclerosis. The illnesses leaves a mark in these samples and, although the brain has been at a terminal stage of the illness, they can investigate to see if there are signs of alterations to the molecules similar to those observed in the experiments, both with cells and with the animals. In this way it can be determined if the molecular targets discovered experimentally are relevant or not to the neurodegenerative processes and, if they are, develop pharmaceutical medicines that can neutralise these processes or the elements that enable them to progress, the goal being to halt the process of death.

In collaboration with neurologists they have also been able to access biological samples of patients who have given their consent and donated them to research. Biological samples such as, fundamentally, blood, given that changes in blood plasma that may indicate alterations at the brain level can be identified.

In search of biological samples

All this is a dynamic process that enables clues to be found and which are, in some cases, relevant for developing pharmaceutical drugs that can halt, or at least slow down, the course of a neurodegenerative illness. Apart from finding these molecules or targets that interact with pharmaceutical medicines, in order to stop the process of progressive deterioration, substances that favour the survival of the neurones and oligodendrocytes are also sought; substances such as, for example, antioxidants, given that, in many of the neurodegenerative illnesses the cells die because oxidative stress is produced. In recent years the Neurobiology Laboratory researchers have found a number of antioxidants that put a brake on the dying process and can act as a neuroprotector. Antioxidants of natural origin that are in our diet – fruit, vegetables, and so on – and which, in some way appear to alleviate the damage cause by these illnesses.

In short, the goal is to gain more knowledge about the molecular bases of these pathologies, define therapeutic targets (molecules of the cell that recognise a pharmaceutical drug and thus respond to it) and, in the last analysis, to come up with pharmaceutical medicines that improve treatment.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=1314&hizk=I

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>