Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify immune dysfunction in melanoma patients

08.05.2007
Researchers at the Stanford University School of Medicine have begun to shed light on why the human immune system isn't able to stop such cancers as melanoma, suggesting answers that could pave the way for better treatment of this often-fatal illness.

In a small study, the scientists found that the immune cells in a majority of people with this deadly skin cancer fail to respond properly to a molecule called interferon, which normally activates the immune system. Without the ability to respond to interferon, the cells are less able to fend off the cancer, according to the study that will be published in the May issue of Public Library of Science-Medicine.

These results help explain a decade of research showing that people with cancer often have dysfunctional immune systems. Until now, researchers could tell that the immune system wasn't working properly but didn't know which genes or pathways were involved in that failure. Finding the disruption in the cancer cells' interferon response could help in the development of vaccines to treat cancers.

"We think this is a dominant way that immune dysfunction occurs in people with cancer," said senior author Peter Lee, MD, associate professor of medicine.

Lee was interested in melanoma rather than other forms of cancer in part because of the deadly nature of the disease, which will kill about one in six of the 47,700 people it is expected to strike this year. Unless melanoma is caught early and removed, there is no effective treatment, although research groups have been testing vaccine therapies for the disease. However, Lee worried that unless researchers better understood immune dysfunctions in those people, the vaccines would have a low probability of success. "If you don't address the underlying immune defects, then vaccines won't do any good," Lee said.

The group started by separating out the four major types of immune cells from people with melanoma and from healthy people. These cells were B cells, two types of T cells and NK, or natural killer, cells. Then, postdoctoral scholar Rebecca Critchley-Thorne, PhD, lead author of the paper, looked in the immune cells of healthy people vs. those with melanoma to see if they had the same levels of activation of roughly 20,000 genes.

She found that the B cells and both types of T cells in people with melanoma showed activity levels that differed from healthy people in only 25 of those genes. Seventeen of those 25 were normally turned on in response to interferon.

"Interferon normally acts as a critical signal in activating immune cells," said Critchley-Thorne. Without the ability to respond to interferon, those cells might detect the cancer but won't activate properly.

This type of experiment only shows that certain genes are turned on at different levels in people with melanoma. It doesn't prove that the cells behave differently than the immune cells of normal people. To verify that the interferon signaling was defective in people with melanoma, Critchley-Thorne isolated those cells and exposed them to interferon.

As predicted, immune cells from people with melanoma also failed to respond normally to the immune activation signal. However, she found that if she left the cells in the presence of a high dose of interferon for much longer than would normally be required, those cells did begin responding.

Lee said the finding explains why a common melanoma treatment, in which some doctors have treated patients with prolonged exposure to interferon, sometimes helps. "Doctors knew it worked in some people but didn't know why," Lee said. This data suggests that treatment works by overcoming the immune system's inability to react properly to interferon.

If Lee's suspicion turns out to be true, doctors may be able to screen melanoma patients for interferon response and provide prolonged interferon treatment for only those patients whose immune cells have defects in that pathway. That means patients who wouldn't benefit from the treatment could avoid suffering through interferon's flu-like side effects.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>