Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential new target for cancer treatment

08.05.2007
A discovery made by a research team at the Sahlgrenska Academy in Göteborg may lead to new treatments for lung cancer and blood cancer, among others. By stopping the production of a particular enzyme in mice, they reduced the development of tumors, and the mice survived considerably longer.

In many forms of cancer the growth of tumors and their capacity to spread is stimulated by a number of CAAX proteins. This has led to intensive research into how to block the activity of these proteins.

"The enzyme we are studying develops CAAX proteins so that they will take on the properties that stimulate cancer growth. By blocking this enzyme, we may be able to reduce the modification of CAAX proteins in a new cancer model in mice," says Associate Professor Martin Bergö, who directs this research at the Wallenberg Laboratory, Sahlgrenska Academy.

The research team uses a genetically modified mouse that produces a muted and constantly active CAAX protein. This is a new model for an extremely aggressive lung cancer and a mild form of blood cancer. In these mice, the production of an enzyme called GGTas1 can also be stopped.

"When we inhibited the production of the enzyme, tumor development decreased dramatically. The mice survived considerably longer, and all signs of blood cancer disappeared. A drug that blocks this enzyme can be an effective future cancer treatment," says Martin Bergö.

The findings strongly indicate that the enzyme GGTas1 is a promising target for cancer treatment. At the cell level, inhibition of the enzyme resulted in blocked cell growth and decreased cell mobility.

"Another interesting discovery in this study was that many types of cells appear to be able to survive without the enzyme. This is important from the point of view of toxicology, since you want a drug to attack only the cancer cells and not normal cells and tissues," says Martin Bergö.

The research team is now pursuing the question of whether GGTas1 can also be an effective target for treating other types of cancer. They will also be ensuring that inhibiting this enzyme does not damage other cell types and tissues.

For more information, please contact: Associate Professor Martin Bergö, phone: +46(0)31-342 78 58; e-mail: martin.bergo@wlab.gu.se Journal: Journal of Clinical Investigation Title of article: GGTase-I deficiency reduces tumor formation and improves survival in mice with K-RAS-induced lung cancer Authors: Anna-Karin M. Sjögren, Karin M.E. Andersson, Meng Liu, Briony A. Cutts, Christin Karlsson, Annika M. Wahlström, Martin Dalin, Carolyn Weinbaum, Patrick J. Casey, Andrej Tarkowski, Birgitta Swolin, Stephen G. Young, Martin O. Bergö

Elin Lindström Claessen | idw
Further information:
http://www.vr.se

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>