Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU, Walter Reed researchers create prosthesis of the future

03.05.2007
Researchers at Arizona State University's Polytechnic campus and the Military Amputee Research Program at Walter Reed Army Medical Center are teaming up to create the next generation of powered prosthetic devices based on lightweight energy storing springs.

The device, nicknamed SPARKy, short for Spring Ankle with Regenerative Kinetics, will be a first-of-its-kind smart, active and energy-storing transtibial (below-the-knee) prosthesis.

Existing technology in prosthetic devices is largely passive and requires the amputee to use 20 to 30 percent more energy to propel themselves forward when walking compared to an able-bodied person, according to Thomas Sugar, ASU assistant professor of engineering at the Polytechnic campus.

Once complete, SPARKy is expected to provide functionality with enhanced ankle motion and push-off power comparable to the gait of an able-bodied individual.

"A gait cycle describes the natural motion of walking starting with the heel strike of one foot and ending with the heel strike of the same foot," says Sugar. "The cycle can be split into two phases — stance and swing. We are concerned with storing energy and releasing energy (regenerative kinetics) in the stance phase."

When you look at the mechanics of walking, it can be described as catching a series of falls, explains Sugar. In the team's device, a tuned spring brakes falls and stores energy as the leg rolls over the ankle during the stance phase, similar to the Achilles tendon.

Sugar's team, made up of doctoral students Joseph Hitt and Matthew Holgate, and ASU Barrett Honors College student Ryan Bellman, have coined SPARKy a robotic tendon because of its bionic properties.

"What we hope to create is a robotic tendon that actively stretches springs when the ankle rolls over the foot, thus allowing the springs to thrust or propel the artificial foot forward for the next step," said Sugar. "Because energy is stored, a lightweight motor can be used to adjust the position of a uniquely tuned spring that provides most of the power required for gait. Thus, less energy is required from the individual."

The team is the first to apply regenerative kinetics to design a lightweight prosthetic device. Others are using large motors combined with harmonic drives, a monopropellant or extremely high-pressure oil.

Sugar's team already has proof that SPARKy is working. In recent experiments with able-bodied subjects outfitted with a robotic ankle orthosis, or a powered assist device, the researchers found that the spring and motor combination was able to amplify the motor power by three-fold. This significant finding allows SPARKy to be downsized from a 6 to 7 kg motor system to a 1 kg (2 lb) system, which is significant weight savings for those who wear a prosthetic.

"We expect this device to revolutionize prosthetics and will be especially helpful for military personnel wounded in active duty," says Hitt.

The project is a multi-phased effort led by ASU's Human Machine Integration Lab, Arise Prosthetics, Phoenix, and Robotics Group Inc., Scottsdale, Ariz. Arise Prosthetics is helping in the fitting of the device and Robotics Group, Inc. is designing embedded processors and motor amplifiers.

The first phase of SPARKy featuring the robotic tendon is expected to be ready for demonstration in December 2007. "I will know it is successful when a wounded solider is able to walk using the device on a treadmill," said Sugar about this phase.

The project will culminate with the functionality to support walking in a daily environment, which is expected in 2009.

Christine Lambrakis | EurekAlert!
Further information:
http://www.asu.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>