Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


PFOA and PFOS Detected in Newborns

An analysis of nearly 300 umbilical cord blood samples led by researchers at the Johns Hopkins Bloomberg School of Public Health shows that newborn babies are exposed to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) while in the womb.

PFOS and PFOA are polyfluoroalkyl compounds (PFCs)—ubiquitous man-made chemicals used in a variety of consumer products, including as a protective coating on food-contact packaging, textiles and carpets, and in the manufacturing of insecticides. The health impact from exposure to these compounds is not fully known, but previous studies found these compounds could cause tumors and developmental toxicity in laboratory animals at doses much higher than those observed in the Hopkins study.

The analysis conducted in Baltimore, Md., detected PFOS in 99 percent of the infant samples examined and PFOA in 100 percent of those examined. The results are published in the April 20, 2007, online edition of the journal Environmental Science & Technology. Some of the study’s findings were previously reported at the Society of Toxicology workshop held in February and at the International Conference on Environmental Epidemiology and Exposure held last September.

“When we began this research we weren’t sure what we would find, because previously there was very little information about fetal exposure to PFOS and PFOA. Even though these chemicals are not bioaccumulative in fat, they are very persistent, which probably accounts for their presence in nearly every newborn,” said Benjamin Apelberg, PhD, lead author of the study and a research associate in the Bloomberg School of Public Health’s Department of Epidemiology. Apelberg conducted this work as part of his doctoral research.

The researchers analyzed cord serum from 299 newborns delivered at Johns Hopkins Hospital in Baltimore between 2004 and 2005. The samples were tested for the presence of PFOS and PFOA and eight other polyfluoroalkyl compounds. PFOA was detected in all of the samples and PFOS in all but two of the samples. The concentrations for both compounds were lower than those typically detected in adults in the United States and lower than those known to cause tumors and developmental problems in laboratory animals; more study is needed to understand health effects at these lower exposure levels.

PFOS concentrations were slightly higher in Black and Asian infants compared to White infants, but no correlation was found between concentrations and the mother’s socioeconomic status, age, education, marital status or whether she lived within the city limits or not. In addition, the researchers found a strong correlation between concentrations of PFOS and PFOA even though the compounds come from different industrial sources. The finding suggests that humans may be exposed to both chemicals in a similar manner.

“This study confirms that, as we might have suspected, exposure to PFOS and PFOA is fairly universal; this is of particular concern because of the potential toxicity, especially developmental toxicity, for these chemicals and the lack of information about health risks at these exposure levels. What was surprising is how strongly they are associated with each other, given that they have very different uses. We will need additional research to understand how exposures are occurring in this region,” said Lynn Goldman, MD, co-author of the study and a professor in the Department of Environmental Health Sciences at the Bloomberg School of Public Health.

Addition study authors include Antonia M. Calafat, Julie B. Herbstman, Zsuzsanna Kuklenyik, Jochen Heidler, Larry Needham, Rolf U. Halden and Frank Witter. Heidler and Halden are with the Johns Hopkins Bloomberg School of Public Health. Herbstman, formerly a doctoral student in epidemiology at the JHSPH is now at the Columbia Mailman School of Public Health and Witter is with the Johns Hopkins School of Medicine. Calafat, Kuklenyik and Needham are with the Centers for Disease Control and Prevention.

The research was supported by funding from the Johns Hopkins Bloomberg School of Public Health’s Maryland Mothers and Babies Study, the Cigarette Restitution Fund, Johns Hopkins Medical Institutions, Johns Hopkins Center for a Livable Future and the Heinz Foundation.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or

Tim Parsons | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>