Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PFOA and PFOS Detected in Newborns

26.04.2007
An analysis of nearly 300 umbilical cord blood samples led by researchers at the Johns Hopkins Bloomberg School of Public Health shows that newborn babies are exposed to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) while in the womb.

PFOS and PFOA are polyfluoroalkyl compounds (PFCs)—ubiquitous man-made chemicals used in a variety of consumer products, including as a protective coating on food-contact packaging, textiles and carpets, and in the manufacturing of insecticides. The health impact from exposure to these compounds is not fully known, but previous studies found these compounds could cause tumors and developmental toxicity in laboratory animals at doses much higher than those observed in the Hopkins study.

The analysis conducted in Baltimore, Md., detected PFOS in 99 percent of the infant samples examined and PFOA in 100 percent of those examined. The results are published in the April 20, 2007, online edition of the journal Environmental Science & Technology. Some of the study’s findings were previously reported at the Society of Toxicology workshop held in February and at the International Conference on Environmental Epidemiology and Exposure held last September.

“When we began this research we weren’t sure what we would find, because previously there was very little information about fetal exposure to PFOS and PFOA. Even though these chemicals are not bioaccumulative in fat, they are very persistent, which probably accounts for their presence in nearly every newborn,” said Benjamin Apelberg, PhD, lead author of the study and a research associate in the Bloomberg School of Public Health’s Department of Epidemiology. Apelberg conducted this work as part of his doctoral research.

The researchers analyzed cord serum from 299 newborns delivered at Johns Hopkins Hospital in Baltimore between 2004 and 2005. The samples were tested for the presence of PFOS and PFOA and eight other polyfluoroalkyl compounds. PFOA was detected in all of the samples and PFOS in all but two of the samples. The concentrations for both compounds were lower than those typically detected in adults in the United States and lower than those known to cause tumors and developmental problems in laboratory animals; more study is needed to understand health effects at these lower exposure levels.

PFOS concentrations were slightly higher in Black and Asian infants compared to White infants, but no correlation was found between concentrations and the mother’s socioeconomic status, age, education, marital status or whether she lived within the city limits or not. In addition, the researchers found a strong correlation between concentrations of PFOS and PFOA even though the compounds come from different industrial sources. The finding suggests that humans may be exposed to both chemicals in a similar manner.

“This study confirms that, as we might have suspected, exposure to PFOS and PFOA is fairly universal; this is of particular concern because of the potential toxicity, especially developmental toxicity, for these chemicals and the lack of information about health risks at these exposure levels. What was surprising is how strongly they are associated with each other, given that they have very different uses. We will need additional research to understand how exposures are occurring in this region,” said Lynn Goldman, MD, co-author of the study and a professor in the Department of Environmental Health Sciences at the Bloomberg School of Public Health.

Addition study authors include Antonia M. Calafat, Julie B. Herbstman, Zsuzsanna Kuklenyik, Jochen Heidler, Larry Needham, Rolf U. Halden and Frank Witter. Heidler and Halden are with the Johns Hopkins Bloomberg School of Public Health. Herbstman, formerly a doctoral student in epidemiology at the JHSPH is now at the Columbia Mailman School of Public Health and Witter is with the Johns Hopkins School of Medicine. Calafat, Kuklenyik and Needham are with the Centers for Disease Control and Prevention.

The research was supported by funding from the Johns Hopkins Bloomberg School of Public Health’s Maryland Mothers and Babies Study, the Cigarette Restitution Fund, Johns Hopkins Medical Institutions, Johns Hopkins Center for a Livable Future and the Heinz Foundation.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>