Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Enhancing chemotherapy's efficacy: new agent has synergistic effect with standard drugs

The new protein-targeted drug inhibited growth of human lung and colon cancer cells

Integrating the use of drugs targeted to specific cancer proteins into current chemotherapy regimens to improve the efficacy of systemic treatment is an important clinical goal at Fox Chase Cancer Center. Fox Chase research presented during the 97th Annual Meeting of the American Association for Cancer Research in Los Angeles has found that a new chemical agent, MCP110, has a synergistic effect both in vitro and in vivo when used with current chemotherapy drugs such as taxanes (Taxol and Taxotere) and vinca-alkaloid compounds such as vincristine.

This synergistic effect—in which the effect of two agents is greater than the sum of their individual effects—appeared when using the combination of MCP110 and Taxol on laboratory cell cultures of human Kaposi’s sarcoma and mouse models carrying human lung and colon cancer cells.

“Together, these findings indicate that MCP compounds have potential to be effective in combination with other anticancer agents,” the authors concluded.

Vladimir Khazak, Ph.D., now director of biology at NexusPharma, Inc., in Langhorne, Pa., and formerly a postdoctoral associate in the Fox Chase laboratory of molecular biologist Erica A. Golemis, Ph.D., presented the research in an AACR poster session. The work also appears in the March 1 issue of the AACR journal Molecular Cancer Therapeutics (“In vitro and in vivo synergy of MCP compounds with mitogen-activated protein kinase pathway—and microtubule-targeting inhibitors”).

The work builds on prior findings published by the team in the Proceedings of the National Academy of Sciences, which first identified MCP compounds, and demonstrated that MCP compounds have the ability to inhibit the growth of cultured cancer cells that depend on interactions of the Ras and Raf oncogenes—growth-promoting genes that can transform cells to cancerous ones if the oncogene is activated inappropriately.

The growth signals sent by these oncogenes use a well-traveled enzyme pathway called MAPK (mitogen-activated protein kinase). This pathway is responsible for cell response to various growth factors and is involved in the action of many cancer-causing genes.

A number of new cancer drugs in development such as MCP110 target this pathway to inhibit one or more steps in the growth signaling process. However, many established cancer chemotherapy drugs are cytotoxic—cell-killing—drugs that work in different ways, such as damaging their DNA or attacking the cells’ architecture. Several widely used drugs, including paclitaxel (Taxol), docetaxel (Taxotere) and long-time standby vincristine, take the latter approach, targeting important cell components called microtubules.

“Very few clinical agents are as successful by themselves as they are in combination,” Golemis pointed out. “Combination chemotherapies may use two drugs that either have the same target or two different targets. Another approach—the one we’ve taken here—is to combine a pathway-targeted drug with conventional chemotherapy.

“We’ve found that MCP110 synergizes both with other small molecules targeting the MAPK pathway and with multiple cytotoxic drugs. These studies predict that MCP110 is a potentially useful treatment agent for combination chemotherapy.” In addition to Khazak and Golemis, co-authors include Fox Chase visiting scientist Natalia Skobeleva, Ph.D., of St. Petersburg Polytechnical Institute in St. Petersburg, Russia, NexusPharma chemistry director Sanjay Menon, Ph.D.(formerly associated with NexusPharma and now at Boehringer Ingelheim Pharmaceuticals, Inc.,), and NexusPharma executive director Lutz Weber, Ph.D.

Karen Mallet | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>