Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information processing in the central nervous system, the signalling system controlling movement

16.04.2007
Research by Renee Theiss, Jason Kuo and C J Heckman, which has just been published in The Journal of Physiology, throws light on how information is processed in the Central Nervous System (CNS) to drive movement. The findings are relevant to understanding mechanisms underlying movement and disorders such as spinal cord injury and motor neurone disease (ALS).

Interneurones in the spinal cord integrate command signals from the brain, with information from the senses, and their own internal pattern generating activities to send appropriate instructions to motorneurones controlling movement. Spinal interneurones exhibit a remarkable variety of firing patterns in response to a pulse of injected current, with important implications for information processing. These patterns range from repetitive to delayed, to bursting and to single spiking.

In the ventral spinal cord, interneurones process both motor commands and sensory inputs. Steady firing interneurones integrate these inputs, while bursting neurons may emphasize input variations and single spiking neurons probably serve as coincidence detectors. Although these different processing modes suggest a diversity in ion channels, Robert Lee (now at Emory University) and C J Heckman hypothesized that a small component of the total current mediated by sodium channels plays a critical role in determining firing patterns. This component is persistent instead of transient and is essential for action potential initiation during prolonged input.

The research by Theiss et al. on slices of spinal cord taken from rats indicates that reducing persistent sodium current in ventral interneurones converted both steady firing and bursting patterns into a single spike pattern, and thus its modulation may provide the CNS with the capacity to mediate dramatic changes in neural computations. This result is an important step forward in our understanding of neuronal processing and should lead to more research on how persistent sodium currents interact with other currents to generate the full array of firing patterns of neurons throughout the CNS.

Dr. Theiss noted that “Abnormal regulation of persistent sodium currents in disease states like spinal injury and ALS could seriously impair the integration of motor commands with sensory inputs, which is essential for normal movement patterns”.

Melanie Thomson | alfa
Further information:
http://www.physoc.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>