Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information processing in the central nervous system, the signalling system controlling movement

16.04.2007
Research by Renee Theiss, Jason Kuo and C J Heckman, which has just been published in The Journal of Physiology, throws light on how information is processed in the Central Nervous System (CNS) to drive movement. The findings are relevant to understanding mechanisms underlying movement and disorders such as spinal cord injury and motor neurone disease (ALS).

Interneurones in the spinal cord integrate command signals from the brain, with information from the senses, and their own internal pattern generating activities to send appropriate instructions to motorneurones controlling movement. Spinal interneurones exhibit a remarkable variety of firing patterns in response to a pulse of injected current, with important implications for information processing. These patterns range from repetitive to delayed, to bursting and to single spiking.

In the ventral spinal cord, interneurones process both motor commands and sensory inputs. Steady firing interneurones integrate these inputs, while bursting neurons may emphasize input variations and single spiking neurons probably serve as coincidence detectors. Although these different processing modes suggest a diversity in ion channels, Robert Lee (now at Emory University) and C J Heckman hypothesized that a small component of the total current mediated by sodium channels plays a critical role in determining firing patterns. This component is persistent instead of transient and is essential for action potential initiation during prolonged input.

The research by Theiss et al. on slices of spinal cord taken from rats indicates that reducing persistent sodium current in ventral interneurones converted both steady firing and bursting patterns into a single spike pattern, and thus its modulation may provide the CNS with the capacity to mediate dramatic changes in neural computations. This result is an important step forward in our understanding of neuronal processing and should lead to more research on how persistent sodium currents interact with other currents to generate the full array of firing patterns of neurons throughout the CNS.

Dr. Theiss noted that “Abnormal regulation of persistent sodium currents in disease states like spinal injury and ALS could seriously impair the integration of motor commands with sensory inputs, which is essential for normal movement patterns”.

Melanie Thomson | alfa
Further information:
http://www.physoc.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>