Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drugs for Parkinson's disease may ease stroke-related disability

Scientists have untangled two similar disabilities that often afflict stroke patients, in the process revealing that one may be treatable with drugs for Parkinson's disease.

Researchers at Washington University School of Medicine in St. Louis showed that stroke damage in a brain region known as the putamen is strongly linked to motor neglect, a condition that makes patients slow to move toward the left side.

Like stroke patients with motor neglect, Parkinson's patients are also slow to initiate responses involving movement. Scientists attribute this deficit in Parkinson's disease to loss of neurons that use the neurotransmitter dopamine to regulate activity in the putamen.

"Earlier attempts to treat stroke patients with neglect with dopamine-like compounds have produced mixed results," says lead author Ayelet Sapir, Ph.D., postdoctoral researcher in neurology. "It's possible, though, that those unfavorable outcomes resulted from an inability to identify the patients most likely to benefit from the intervention. Our data indicate that patients with damage to the putamen may respond differently to this treatment than patients who have neglect from stroke damage to other parts of brain."

Sapir describes the research, which appears in The Journal of Neuroscience, as part of a broader effort to precisely determine how strokes in different parts of the brain's right hemisphere affect patients. She and others want to closely link damage in a given right brain region to a particular set of symptoms.

"This approach has been applied to strokes affecting the left hemisphere, where damage to various brain areas is linked to specific kinds of language deficits," Sapir says. "Taking the same approach to studying lesions of the right hemisphere should help improve patient treatment by allowing us to develop therapeutic approaches targeted to specific brain circuits and neurochemical systems."

Many problems after a right-brain stroke fall under the broad heading of neglect: inability to detect a stimulus or do something about it. Neglect is highly disabling since it interferes with a number of basic activities such as dressing, self-care and driving, Sapir notes.

Every year, approximately 3 to 5 million people with strokes on the right side of the brain between the ear and the temple develop a condition known as spatial neglect that hampers their ability to notice things on their left side. Patients may seem to be unaware of their left arm, for example, or might fail to eat from the left side of a food tray. The condition is most severe in the first few months following a stroke, but in some patients it becomes a chronic problem.

Some patients with strokes in this area develop a slightly different condition known as motor neglect. This causes them to be slow to act toward the left side of their environment. It might, for example, make them slow to swat at a bug that lands on their left side.

How to separate slowness to notice a stimulus (spatial neglect) from slowness to act on a stimulus (motor neglect) has been a persistent problem for neuroscientists. In a common laboratory test of neglect's effects, patients watch a video screen for the appearance of a stimulus, usually a symbol or shape, on either the left or the right side of the screen. When they see a stimulus, they report which side it was on to researchers.

The challenge for researchers was that spatial neglect and motor neglect produced the same results—a patient who was slow to report stimuli appearing on the left side of the video screen. This was true for spatial neglect patients because they were slow to see the stimulus; motor neglect patients could see it but were slow to make the movements required to report that they had seen it.

To overcome this problem, Sapir had patients start the test with their hand on a button located to the left of the video screen. When they saw a stimulus, they reached toward the video screen and touched it on the side where the stimulus appeared.

Slowness to respond to stimuli appearing on the left side of the video screen, she theorized, would mean the patient had spatial neglect and was having trouble noticing the stimuli.

Patients who promptly noticed left-side stimuli could report that perception by reaching to their unimpaired right side.

Of 29 patients tested, six were able to respond promptly to left-side stimuli, suggesting they had motor neglect. When Sapir compared high-resolution magnetic resonance imaging brain scans from the two groups, she found a starkly consistent pattern: all the patients identified as having motor neglect had damage to the putamen, while those who still responded slowly to left-side stimuli did not.

Although the putamen isn't damaged in Parkinson's disease, scientists have identified it as a brain region that processes dopamine, the neurotransmitter that drops to low levels in Parkinson's patients.

Scientists plan further study of how other types of neglect may be connected to damage to different brain areas. As an example, Sapir notes that when clinicians give recovering stroke patients a simple drawing to copy, some will leave out the left side of the drawing, while others will copy objects from all over the drawing, but leave out the left sides of individual objects. Whether this represents different kinds of neglect stemming from damage to different brain areas is not yet clear.

"Another possible kind of neglect has to do with putting a patient's good hand on their bad side," Sapir says. "When you do this to some patients, their ability to respond with their good hand decreases. It's like a postural deficit."

Sapir and her colleagues hope to eventually develop a battery of tests that will allow clinicians to dissociate the different kinds of neglect and develop new treatments.

Michael C. Purdy | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>