Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drugs for Parkinson's disease may ease stroke-related disability

05.04.2007
Scientists have untangled two similar disabilities that often afflict stroke patients, in the process revealing that one may be treatable with drugs for Parkinson's disease.

Researchers at Washington University School of Medicine in St. Louis showed that stroke damage in a brain region known as the putamen is strongly linked to motor neglect, a condition that makes patients slow to move toward the left side.

Like stroke patients with motor neglect, Parkinson's patients are also slow to initiate responses involving movement. Scientists attribute this deficit in Parkinson's disease to loss of neurons that use the neurotransmitter dopamine to regulate activity in the putamen.

"Earlier attempts to treat stroke patients with neglect with dopamine-like compounds have produced mixed results," says lead author Ayelet Sapir, Ph.D., postdoctoral researcher in neurology. "It's possible, though, that those unfavorable outcomes resulted from an inability to identify the patients most likely to benefit from the intervention. Our data indicate that patients with damage to the putamen may respond differently to this treatment than patients who have neglect from stroke damage to other parts of brain."

Sapir describes the research, which appears in The Journal of Neuroscience, as part of a broader effort to precisely determine how strokes in different parts of the brain's right hemisphere affect patients. She and others want to closely link damage in a given right brain region to a particular set of symptoms.

"This approach has been applied to strokes affecting the left hemisphere, where damage to various brain areas is linked to specific kinds of language deficits," Sapir says. "Taking the same approach to studying lesions of the right hemisphere should help improve patient treatment by allowing us to develop therapeutic approaches targeted to specific brain circuits and neurochemical systems."

Many problems after a right-brain stroke fall under the broad heading of neglect: inability to detect a stimulus or do something about it. Neglect is highly disabling since it interferes with a number of basic activities such as dressing, self-care and driving, Sapir notes.

Every year, approximately 3 to 5 million people with strokes on the right side of the brain between the ear and the temple develop a condition known as spatial neglect that hampers their ability to notice things on their left side. Patients may seem to be unaware of their left arm, for example, or might fail to eat from the left side of a food tray. The condition is most severe in the first few months following a stroke, but in some patients it becomes a chronic problem.

Some patients with strokes in this area develop a slightly different condition known as motor neglect. This causes them to be slow to act toward the left side of their environment. It might, for example, make them slow to swat at a bug that lands on their left side.

How to separate slowness to notice a stimulus (spatial neglect) from slowness to act on a stimulus (motor neglect) has been a persistent problem for neuroscientists. In a common laboratory test of neglect's effects, patients watch a video screen for the appearance of a stimulus, usually a symbol or shape, on either the left or the right side of the screen. When they see a stimulus, they report which side it was on to researchers.

The challenge for researchers was that spatial neglect and motor neglect produced the same results—a patient who was slow to report stimuli appearing on the left side of the video screen. This was true for spatial neglect patients because they were slow to see the stimulus; motor neglect patients could see it but were slow to make the movements required to report that they had seen it.

To overcome this problem, Sapir had patients start the test with their hand on a button located to the left of the video screen. When they saw a stimulus, they reached toward the video screen and touched it on the side where the stimulus appeared.

Slowness to respond to stimuli appearing on the left side of the video screen, she theorized, would mean the patient had spatial neglect and was having trouble noticing the stimuli.

Patients who promptly noticed left-side stimuli could report that perception by reaching to their unimpaired right side.

Of 29 patients tested, six were able to respond promptly to left-side stimuli, suggesting they had motor neglect. When Sapir compared high-resolution magnetic resonance imaging brain scans from the two groups, she found a starkly consistent pattern: all the patients identified as having motor neglect had damage to the putamen, while those who still responded slowly to left-side stimuli did not.

Although the putamen isn't damaged in Parkinson's disease, scientists have identified it as a brain region that processes dopamine, the neurotransmitter that drops to low levels in Parkinson's patients.

Scientists plan further study of how other types of neglect may be connected to damage to different brain areas. As an example, Sapir notes that when clinicians give recovering stroke patients a simple drawing to copy, some will leave out the left side of the drawing, while others will copy objects from all over the drawing, but leave out the left sides of individual objects. Whether this represents different kinds of neglect stemming from damage to different brain areas is not yet clear.

"Another possible kind of neglect has to do with putting a patient's good hand on their bad side," Sapir says. "When you do this to some patients, their ability to respond with their good hand decreases. It's like a postural deficit."

Sapir and her colleagues hope to eventually develop a battery of tests that will allow clinicians to dissociate the different kinds of neglect and develop new treatments.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>