Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cure for cancer one step closer

05.04.2007
The cure for cancer is one step closer this week with the first collections of cancer tissue taking place at the new Wesley Research Institute Tissue Bank.

The Tissue Bank is the first of its kind in Queensland to provide a widely available and diversified collection of ethically consented and clinically annotated tissue, helping to unravel the cause, progression and potential treatment for cancer and other diseases.

Professor Julie Campbell AO, Director of The Wesley Research Institute, said the current absence of large, high quality cancer tissue and blood collections with clinical data is a major barrier to improving care of cancer patients.

"Queensland research has taken an enormous step forward this week. There is every possibility that findings made achievable by the Tissue Bank will lead to the next big breakthrough in the fight against cancer," she said.

"By providing researchers who are part of an ethically and scientifically approved research project with tissue, matching blood samples and full clinical data, valuable funds will be saved, which can then be applied to further their research.

"There is compelling evidence that new methods for screening, diagnosis and evaluation of cancer can make a significant impact on cancer care in the immediate future," Professor Campbell said.

Dr John Lumley, a surgeon from The Wesley Hospital, said that these specimens would be donated by consenting patients during the course of their normal treatment.

"I encourage patients and surgeons to support the important work of the Tissue Bank because everybody can play a part in the cure. Every cell contains a clue that can make a difference to tomorrow's cancer patients," he said.

Queensland is well placed as a source of cancer tissue due to its diverse population, large number of aged retirees, and high-rate of some cancers, particularly melanoma. The Wesley Hospital alone had almost 2000 cancer related surgeries in 2004.

The Queensland Government contributed $1.42 million towards the construction of the Tissue Bank through the Smart State Research Facility Fund.

The investment has built and equipped, as part of the Institute's infrastructure, a dedicated laboratory with highprecision equipment for preparation and study of tissue samples.

This equipment includes an Aperio Scan Scope which takes high resolution images of tissue samples that can then be shared with researchers around the world, and two vapour phase nitrogen storage vessels (-196ºC) and two -80ºC freezers which have the capacity to house in excess of 164,000 tissue and blood samples.

The small sections of tissue collected from patients will be stored in cryogenic vials which will help preserve the tissue's proteins and genetic material almost indefinitely.

The Wesley Research Institute is a leading medical research facility with a commitment to patient care, ethical conduct and quality research that aims to improve quality of life through better diagnosis and treatment.

Colleen McMillan | EurekAlert!
Further information:
http://www.researchaustralia.com.au/
http://www.wesley.com.au

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>