Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy shows promise for rescuing deteriorating vision

29.03.2007
For the millions of Americans whose vision is slowly ebbing due to degenerative diseases of the eye, the lowly neural progenitor cell may be riding to the rescue.

In a study in rats, neural progenitor cells derived from human fetal stem cells have been shown to protect the vision of animals with degenerative eye disease similar to the kinds of diseases that afflict humans. The new study appears today (March 28) in the journal Public Library of Science (PLoS) One.

The lead author of the study, University of Wisconsin-Madison researcher David Gamm, says the cells - formative brain cells that arise in early development - show "some of the best rescue, functionally and anatomically" of any such work to date. In animals whose vision would typically be lost to degenerative retinal disease, the cells were shown to protect vision and the cells in the eye that underpin sight.

The new findings are important because they suggest there may be novel ways to preserve vision in the context of degenerative diseases for which there are now no effective treatments. Macular degeneration, an age-related affliction that gradually destroys central vision, is a scourge of old age, robbing people of the ability to read, recognize faces and live independently.

The finding that the brain cells protected the cells in the eye was a surprise, according to Raymond D. Lund, an author of the new study and an eye disease expert at the University of Utah and the Oregon Health and Sciences University. The neural progenitor cells, which arise from stem cells and further differentiate into different types of cells found in the central nervous system, were being tested for their ability to deliver another agent, a growth factor that has been shown to be effective in treating some types of degenerative disease.

What was surprising, say Gamm and Lund, was that the cells alone demonstrated a remarkable ability to rescue vision.

"On their own, they were able to support retinal cells and keep them alive," says Lund, who has conducted pioneering studies of cell therapy for eye disease. "We didn't expect that at all. We've used a number of different cell types from different sources and these have given us the best results we've ever got."

How the cells act to preserve the deteriorating eye cells remains unknown, says Gamm. Like all cells, neural progenitor cells do many things and secrete many different types of chemicals that may influence the cells around them.

"The idea was to test the cells as a continuous delivery system" to shuttle an agent known as glial cell line-derived neurotrophic factor or GDNF, Lund explains. "It's not a sensible thing to inject the eyes many times over years. The idea was to use the cells as a continuous delivery system, but we found they work quite well on their own."

Lund has experimented with other cell types as therapies for preserving vision. The neural progenitor cells, a cell model developed by Wisconsin stem cell researcher Clive Svendsen, have been used experimentally to deliver the same growth factor in models of Parkinson's disease and Lou Gehrig's disease. Svendsen is also an author of the new PloS One report.

"It seems that the cells in and of themselves are quite neuroprotective," says Gamm. "They don't become retinal cells. They maintain their own identity, but they migrate within the outer and inner retina" where they seem to confer some protection to the light-sensing cells that typically die in the course of degenerative eye disease.

For researchers, the work is intriguing because the progenitor cells come from the brain itself, and not from the part of the nervous system devoted to vision.

"This cell type isn't derived from the retina. It is derived from the brain," says Gamm. "But we're not asking it to become a retina. They survive in the environment of the eye and don't disrupt the local architecture. They seem to live in a symbiotic relation ship" with retinal cells.

Gamm and Lund emphasize that the new work is preliminary, and that much remains to be done before the cells can be tested in humans: "The first thing is to show that something works, which we have done," says Lund. "Now we need to find out why, but this is a good jumping off point. "

David Gamm | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>