Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy shows promise for rescuing deteriorating vision

29.03.2007
For the millions of Americans whose vision is slowly ebbing due to degenerative diseases of the eye, the lowly neural progenitor cell may be riding to the rescue.

In a study in rats, neural progenitor cells derived from human fetal stem cells have been shown to protect the vision of animals with degenerative eye disease similar to the kinds of diseases that afflict humans. The new study appears today (March 28) in the journal Public Library of Science (PLoS) One.

The lead author of the study, University of Wisconsin-Madison researcher David Gamm, says the cells - formative brain cells that arise in early development - show "some of the best rescue, functionally and anatomically" of any such work to date. In animals whose vision would typically be lost to degenerative retinal disease, the cells were shown to protect vision and the cells in the eye that underpin sight.

The new findings are important because they suggest there may be novel ways to preserve vision in the context of degenerative diseases for which there are now no effective treatments. Macular degeneration, an age-related affliction that gradually destroys central vision, is a scourge of old age, robbing people of the ability to read, recognize faces and live independently.

The finding that the brain cells protected the cells in the eye was a surprise, according to Raymond D. Lund, an author of the new study and an eye disease expert at the University of Utah and the Oregon Health and Sciences University. The neural progenitor cells, which arise from stem cells and further differentiate into different types of cells found in the central nervous system, were being tested for their ability to deliver another agent, a growth factor that has been shown to be effective in treating some types of degenerative disease.

What was surprising, say Gamm and Lund, was that the cells alone demonstrated a remarkable ability to rescue vision.

"On their own, they were able to support retinal cells and keep them alive," says Lund, who has conducted pioneering studies of cell therapy for eye disease. "We didn't expect that at all. We've used a number of different cell types from different sources and these have given us the best results we've ever got."

How the cells act to preserve the deteriorating eye cells remains unknown, says Gamm. Like all cells, neural progenitor cells do many things and secrete many different types of chemicals that may influence the cells around them.

"The idea was to test the cells as a continuous delivery system" to shuttle an agent known as glial cell line-derived neurotrophic factor or GDNF, Lund explains. "It's not a sensible thing to inject the eyes many times over years. The idea was to use the cells as a continuous delivery system, but we found they work quite well on their own."

Lund has experimented with other cell types as therapies for preserving vision. The neural progenitor cells, a cell model developed by Wisconsin stem cell researcher Clive Svendsen, have been used experimentally to deliver the same growth factor in models of Parkinson's disease and Lou Gehrig's disease. Svendsen is also an author of the new PloS One report.

"It seems that the cells in and of themselves are quite neuroprotective," says Gamm. "They don't become retinal cells. They maintain their own identity, but they migrate within the outer and inner retina" where they seem to confer some protection to the light-sensing cells that typically die in the course of degenerative eye disease.

For researchers, the work is intriguing because the progenitor cells come from the brain itself, and not from the part of the nervous system devoted to vision.

"This cell type isn't derived from the retina. It is derived from the brain," says Gamm. "But we're not asking it to become a retina. They survive in the environment of the eye and don't disrupt the local architecture. They seem to live in a symbiotic relation ship" with retinal cells.

Gamm and Lund emphasize that the new work is preliminary, and that much remains to be done before the cells can be tested in humans: "The first thing is to show that something works, which we have done," says Lund. "Now we need to find out why, but this is a good jumping off point. "

David Gamm | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>