Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magic bullet homes in

04.03.2002


The search for a magic bullet to kill only cancer cells has been on for years.
© Getty Images


New candidate cancer drug does damage only in tumours.

A new drug turns lethal only when it reaches cancer cells. In healthy cells it is harmless. Though not yet shown to work in humans, it is a step towards a magic bullet to knock out tumour cells selectively, with minimal side effects.

The drug works in mice implanted with human tumours, say chemists Lutz Tietze and colleagues at the University of Gottingen in Germany. Before being treated with the drug, the mice are given an enzyme to activate it that sticks only to the human tumour cells, ignoring healthy mouse cells. So the drug is safe until the enzyme activates it in the tumour. Then it destroys the cancerous cells1.



The researchers report that the tumours shrank without inducing any visible side effects in the mice. They think that the same principles could be used in people. The activating enzyme could be tailored to latch onto malignant tissues and bypass normal human cells.

"We are now in contact with the pharmaceutical industry, and will start clinical tests", says Tietze.

Magic bullet

Most existing chemotherapy is toxic to normal cells as well as cancerous ones. This causes severe side effects, such as a depressed immune system. Cancer researchers long for a magic bullet: a drug that works only where it is needed.

The warhead of the Gottingen antitumour molecule is a ring of three carbon atoms. This ring is highly strained and apt to burst open. Open, it is a reactive molecule that wreaks havoc among the nucleic acid molecules essential for normal cell function. The chemists copied this trick from a highly toxic antibiotic produced by a fungus.

So that their molecular bomb does not detonate everywhere in the body, the team have made a ’prodrug’. This is like the natural antibiotic but without the strained ring and with a sugar safety-catch. Once the sugar is clipped off, the molecule rearranges itself into a three-atom ring, and proceeds to do its toxic business.

Tietze’s team uses an enzyme to cut away the sugar safety-catch. An antibody on the enzyme acts as a tumour-specific hook. Such antibodies linked to toxic or radioactive molecules have long been explored for making magic-bullet drugs; none has yet found clinical use.

The advantage of this enzyme-activated approach, originally developed in the 1980s, is that the drug isn’t even activated until it reaches the target site. The selectivity of the damage still depends on antibody’s ability to hook onto the right cells, and on the absence of other enzymes in the body that also activate the prodrug.

Whether the idea will work cleanly enough in humans remains to be seen.

References

  1. Tietze, L. F. et al. Proof of principle in the selective treatment of cancer by antibody-directed enzyme prodrug therapy: the development of a highly potent prodrug. Angewandte Chemie International Edition, 41, 759 - 761, (2002).


PHILIP BALL | © Nature News Service

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

Researcher creates a controlled rogue wave in realistic oceanic conditions

30.09.2016 | Earth Sciences

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

Spiral arms: not just in galaxies

30.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>