Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magic bullet homes in

04.03.2002


The search for a magic bullet to kill only cancer cells has been on for years.
© Getty Images


New candidate cancer drug does damage only in tumours.

A new drug turns lethal only when it reaches cancer cells. In healthy cells it is harmless. Though not yet shown to work in humans, it is a step towards a magic bullet to knock out tumour cells selectively, with minimal side effects.

The drug works in mice implanted with human tumours, say chemists Lutz Tietze and colleagues at the University of Gottingen in Germany. Before being treated with the drug, the mice are given an enzyme to activate it that sticks only to the human tumour cells, ignoring healthy mouse cells. So the drug is safe until the enzyme activates it in the tumour. Then it destroys the cancerous cells1.



The researchers report that the tumours shrank without inducing any visible side effects in the mice. They think that the same principles could be used in people. The activating enzyme could be tailored to latch onto malignant tissues and bypass normal human cells.

"We are now in contact with the pharmaceutical industry, and will start clinical tests", says Tietze.

Magic bullet

Most existing chemotherapy is toxic to normal cells as well as cancerous ones. This causes severe side effects, such as a depressed immune system. Cancer researchers long for a magic bullet: a drug that works only where it is needed.

The warhead of the Gottingen antitumour molecule is a ring of three carbon atoms. This ring is highly strained and apt to burst open. Open, it is a reactive molecule that wreaks havoc among the nucleic acid molecules essential for normal cell function. The chemists copied this trick from a highly toxic antibiotic produced by a fungus.

So that their molecular bomb does not detonate everywhere in the body, the team have made a ’prodrug’. This is like the natural antibiotic but without the strained ring and with a sugar safety-catch. Once the sugar is clipped off, the molecule rearranges itself into a three-atom ring, and proceeds to do its toxic business.

Tietze’s team uses an enzyme to cut away the sugar safety-catch. An antibody on the enzyme acts as a tumour-specific hook. Such antibodies linked to toxic or radioactive molecules have long been explored for making magic-bullet drugs; none has yet found clinical use.

The advantage of this enzyme-activated approach, originally developed in the 1980s, is that the drug isn’t even activated until it reaches the target site. The selectivity of the damage still depends on antibody’s ability to hook onto the right cells, and on the absence of other enzymes in the body that also activate the prodrug.

Whether the idea will work cleanly enough in humans remains to be seen.

References

  1. Tietze, L. F. et al. Proof of principle in the selective treatment of cancer by antibody-directed enzyme prodrug therapy: the development of a highly potent prodrug. Angewandte Chemie International Edition, 41, 759 - 761, (2002).


PHILIP BALL | © Nature News Service

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>