Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers hot on the trail of brain cell degeneration

20.03.2007
A research team headed by Academy Research Fellow Michael Courtney has identified a new molecular pathway in neurons. The pathway is a factor in the degeneration of brain cells, which in turn plays an important role in neurological conditions and diseases, such as Alzheimer’s disease, epilepsy and stroke.

Courtney and his team, based at the A. I. Virtanen Institute of the University of Kuopio, joined forces with Docent Eleanor Coffey’s team at the Turku Centre for Biotechnology to carry out the study as part of a series of successful collaborations between the two teams. The results of their study are published in the latest issue of Nature Neuroscience.

In a number of neurodegenerative diseases, neurons in the brain are over-stimulated, which triggers programmed cell death, or apoptosis. The study shows that the Rho protein, which has long been recognised as an important player in cancer formation, also plays a key role in the destruction of neurons in disease.

“These surprising findings add an entire pathway to the map of neurodegenerative signalling processes,” says Courtney. “This area of investigation could therefore offer novel therapeutic strategies for neurodegenerative diseases”.

Targeting molecular signals

How neurons actually die has been unclear. It is likely that it is associated with a variety of different mechanisms. Research has shown that the destruction of cells be over-stimulation depends on excess entry of calcium into the cells. Researchers have long been trying to map how cells generate destruction signals in response to the calcium, in the hope of finding new targets for drug design.

The object of the study, the Rho protein, belongs to a family of proteins able to influence signals that had been linked to cell degeneration. The two teams’ analysis demonstrated that over-stimulation causes activation of Rho as well as cell destruction signals. Blocking Rho activity by genetic modification keeps the protein in an inactive state, and the nerve cells thus survive a previously toxic level of over-stimulation.

The study identifies a new factor provoking cell degeneration. It is more than likely that future research will uncover more such factors interacting with each other. Investigating these will benefit new forms of treatment and advance research that aims to alleviate symptoms. The researchers behind the study hope that the results can be used in planning new targets for drugs to reduce the cell destruction signals caused by calcium entry. Finding new targets for medicine development is also significant in terms of the economy, owing to the costly treatment of these diseases, both in Finland and globally.

Cooperation between biocentres gets research going

The teams’ study is a perfect example of the cooperation between biocentres in Finland (Biocenter Finland) and international networking. The research was funded mainly by the Academy of Finland and the European Union. The two research teams are part of a Europe-wide consortium, STRESSPROTECT, within the EU Sixth Framework Programme. The consortium aims at generating the basis for novel neuroprotective drugs for neurodegenerative conditions involving over-stimulation of neurons (www.neuroprotect.eu).

Niko Rinta | alfa
Further information:
http://www.neuroprotect.eu
http://www.uku.fi/aivi/neuro/index_signalling.shtml
http://www.aka.fi

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>