Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers hot on the trail of brain cell degeneration

20.03.2007
A research team headed by Academy Research Fellow Michael Courtney has identified a new molecular pathway in neurons. The pathway is a factor in the degeneration of brain cells, which in turn plays an important role in neurological conditions and diseases, such as Alzheimer’s disease, epilepsy and stroke.

Courtney and his team, based at the A. I. Virtanen Institute of the University of Kuopio, joined forces with Docent Eleanor Coffey’s team at the Turku Centre for Biotechnology to carry out the study as part of a series of successful collaborations between the two teams. The results of their study are published in the latest issue of Nature Neuroscience.

In a number of neurodegenerative diseases, neurons in the brain are over-stimulated, which triggers programmed cell death, or apoptosis. The study shows that the Rho protein, which has long been recognised as an important player in cancer formation, also plays a key role in the destruction of neurons in disease.

“These surprising findings add an entire pathway to the map of neurodegenerative signalling processes,” says Courtney. “This area of investigation could therefore offer novel therapeutic strategies for neurodegenerative diseases”.

Targeting molecular signals

How neurons actually die has been unclear. It is likely that it is associated with a variety of different mechanisms. Research has shown that the destruction of cells be over-stimulation depends on excess entry of calcium into the cells. Researchers have long been trying to map how cells generate destruction signals in response to the calcium, in the hope of finding new targets for drug design.

The object of the study, the Rho protein, belongs to a family of proteins able to influence signals that had been linked to cell degeneration. The two teams’ analysis demonstrated that over-stimulation causes activation of Rho as well as cell destruction signals. Blocking Rho activity by genetic modification keeps the protein in an inactive state, and the nerve cells thus survive a previously toxic level of over-stimulation.

The study identifies a new factor provoking cell degeneration. It is more than likely that future research will uncover more such factors interacting with each other. Investigating these will benefit new forms of treatment and advance research that aims to alleviate symptoms. The researchers behind the study hope that the results can be used in planning new targets for drugs to reduce the cell destruction signals caused by calcium entry. Finding new targets for medicine development is also significant in terms of the economy, owing to the costly treatment of these diseases, both in Finland and globally.

Cooperation between biocentres gets research going

The teams’ study is a perfect example of the cooperation between biocentres in Finland (Biocenter Finland) and international networking. The research was funded mainly by the Academy of Finland and the European Union. The two research teams are part of a Europe-wide consortium, STRESSPROTECT, within the EU Sixth Framework Programme. The consortium aims at generating the basis for novel neuroprotective drugs for neurodegenerative conditions involving over-stimulation of neurons (www.neuroprotect.eu).

Niko Rinta | alfa
Further information:
http://www.neuroprotect.eu
http://www.uku.fi/aivi/neuro/index_signalling.shtml
http://www.aka.fi

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>