Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC research discovers new way to fight antibiotic-resistant bacteria

19.03.2007
Research by a team at the University of Cincinnati (UC) has helped in the discovery of a new way to fight antibiotic-resistant bacteria, responsible for preventing treatment of lung infections in patients with cystic fibrosis and life-threatening cases of pneumonia.

A study done in collaboration with the University of Washington found that using a metallic "Trojan Horse"—tricking the bacteria by replacing the iron they need from their environment with the metallic element gallium—can kill bacteria.

The study will appear in the April 2 issue of the Journal of Clinical Investigation.

The UC team headed by Bradley Britigan, MD, chairman of the internal medicine department at UC and staff physician at the Cincinnati Department of Veterans Affairs Medical Center, found substituting gallium for iron would prevent the bacteria from growing.

"All bacteria need iron from their host environment to grow and replicate," said Britigan, coauthor of the study. "Without enough iron, the organism has a much more difficult time forming 'biofilms,' protective skins that form around colonies of bacteria and help them maintain chronic infections."

Rather than trying to find a new way to attack and kill off bacteria, researchers used gallium, which resembles iron but cannot be used by bacteria, to create an inhospitable environment.

"Cells take up gallium as they would iron and insert it into enzymes," said Britigan. "But when they do this, the enzymes stop working and the bacteria don't grow."

In both cell cultures and in mice, the gallium treatment killed bacteria and prevented the formation of biofilms.

Britigan says he believes the use of gallium could be a new way to prevent or treat lung infections, especially in cystic fibrosis patients.

"Treatment of these infections has become more difficult in recent years due to the development of resistance to conventional antibiotics," he said.

Gallium is already FDA approved for treating high calcium levels in cancer patients, and research is under way to determine whether it can be used to fight tuberculosis and other lung infections.

"We already knew it could be used against cancer cells," Britigan said. "But until recently, no one has looked at it as a means for treating bacterial infections. We want to examine possible mechanisms of resistance that could develop in bacteria, extend the animal models to look at possible toxicity if used in humans, and find a better way to administer the drug to humans that would be more convenient and pose less potential for toxicity."

Katie Pence | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>