Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liverpool to trial new pancreatic cancer therapy

16.03.2007
Patients in Liverpool are to trial a new therapy for pancreatic cancer – a disease which sees most sufferers die within a year of diagnosis.

One of the 10 most common cancers in the UK, it is among the most difficult to diagnose and treat and kills around 7,000 people each year. There are very few early symptoms so most patients present late and only around 15% are suitable for surgery – currently the only treatment available.

The Phase III TeloVac trial has been designed by the Pancreatic Cancer Clinical Sub-Group of the UK National Cancer Research Institute and will be run by Cancer Research UK’s Liverpool Cancer Trials Unit.

Funded by Cancer Research UK, the trial will test the vaccine GV1001 alongside two chemotherapy drugs gemcitabine and capecitabine on patients with locally advanced and metastatic pancreatic cancer. GV1001 is a new immunotherapeutic drug for pancreatic cancer developed by Danish-based biotech company Pharmexa.

One of the trial’s two principal investigators, Professor John Neoptolemos, based at the University of Liverpool and a consultant surgeon at the Royal Liverpool University Hospital, said: “The National Cancer Research Institute is very committed to this trial and is focusing a great deal of energy on recruiting patients to take part in it. This is because we firmly believe that GV1001 could play a key role in the future treatment of pancreatic cancer.”

He added: “We’re proud to manage this fundamental trial at the Liverpool Cancer Trials Unit and we hope other centres in the UK will participate in order to achieve maximum benefit for patients suffering from locally advanced and metastatic pancreatic cancer.”

“GV1001 is a particularly attractive vaccine; the antigen that it targets is expressed on virtually all pancreatic cancer cells and the vaccine stimulates the production of all of the cells that are required for an effective immune attack upon these cancers. Adding it to the platform of chemotherapy is an exciting strategy which, if successful, would create a new standard of care in this disease."

Professor John Toy, Medical Director at Cancer Research UK, said: “New treatments are desperately needed for pancreatic cancer as survival rates are so poor. GV1001 is a new generation of agent that harnesses the body’s own immune system to fight cancer. We are delighted to be funding a trial of such an innovative treatment.”

Patients with non-resectable pancreatic cancer will be randomly distributed into one of three arms of the trial:

• 370 patients will be treated with gemcitabine and capecitabine in a standard treatment

• 370 patients will be treated first with gemcitabine and capecitabine for eight weeks, following which they will be treated with GV1001

• 370 patients will be treated with gemcitabine and capecitabine and with GV1001 at the same time

The research team aims to find whether the patients treated with a combination of GV1001 and chemotherapy live longer than patients who only receive chemotherapy. It is not expected that GV1001 will cure patients, but that treatment will prolong their lives and that a small proportion of the patients may experience significantly longer survival.

Kate Spark | alfa
Further information:
http://www.liv.ac.uk

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>