Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liverpool to trial new pancreatic cancer therapy

16.03.2007
Patients in Liverpool are to trial a new therapy for pancreatic cancer – a disease which sees most sufferers die within a year of diagnosis.

One of the 10 most common cancers in the UK, it is among the most difficult to diagnose and treat and kills around 7,000 people each year. There are very few early symptoms so most patients present late and only around 15% are suitable for surgery – currently the only treatment available.

The Phase III TeloVac trial has been designed by the Pancreatic Cancer Clinical Sub-Group of the UK National Cancer Research Institute and will be run by Cancer Research UK’s Liverpool Cancer Trials Unit.

Funded by Cancer Research UK, the trial will test the vaccine GV1001 alongside two chemotherapy drugs gemcitabine and capecitabine on patients with locally advanced and metastatic pancreatic cancer. GV1001 is a new immunotherapeutic drug for pancreatic cancer developed by Danish-based biotech company Pharmexa.

One of the trial’s two principal investigators, Professor John Neoptolemos, based at the University of Liverpool and a consultant surgeon at the Royal Liverpool University Hospital, said: “The National Cancer Research Institute is very committed to this trial and is focusing a great deal of energy on recruiting patients to take part in it. This is because we firmly believe that GV1001 could play a key role in the future treatment of pancreatic cancer.”

He added: “We’re proud to manage this fundamental trial at the Liverpool Cancer Trials Unit and we hope other centres in the UK will participate in order to achieve maximum benefit for patients suffering from locally advanced and metastatic pancreatic cancer.”

“GV1001 is a particularly attractive vaccine; the antigen that it targets is expressed on virtually all pancreatic cancer cells and the vaccine stimulates the production of all of the cells that are required for an effective immune attack upon these cancers. Adding it to the platform of chemotherapy is an exciting strategy which, if successful, would create a new standard of care in this disease."

Professor John Toy, Medical Director at Cancer Research UK, said: “New treatments are desperately needed for pancreatic cancer as survival rates are so poor. GV1001 is a new generation of agent that harnesses the body’s own immune system to fight cancer. We are delighted to be funding a trial of such an innovative treatment.”

Patients with non-resectable pancreatic cancer will be randomly distributed into one of three arms of the trial:

• 370 patients will be treated with gemcitabine and capecitabine in a standard treatment

• 370 patients will be treated first with gemcitabine and capecitabine for eight weeks, following which they will be treated with GV1001

• 370 patients will be treated with gemcitabine and capecitabine and with GV1001 at the same time

The research team aims to find whether the patients treated with a combination of GV1001 and chemotherapy live longer than patients who only receive chemotherapy. It is not expected that GV1001 will cure patients, but that treatment will prolong their lives and that a small proportion of the patients may experience significantly longer survival.

Kate Spark | alfa
Further information:
http://www.liv.ac.uk

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
29.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>