Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain imaging study shows fears learned by observing others are similar to those learned from direct experience

16.03.2007
Humans acquire fears using similar neural processes whether they’ve personally experienced an aversive event or only witnessed it, according to a study by researchers at New York University’s Departments of Psychology.

This is the first study examining the brain basis of fears acquired indirectly, through the observation of others. The study shows that the amygdala, which is known to be critical to the acquisition and expression of fears from personal experience, is also involved during the acquisition and expression of fears obtained indirectly through social observation. The findings appear in the most recent issue of the journal Social Cognitive and Affective Neuroscience (SCAN).

The research team, from the laboratory of NYU Professor Elizabeth Phelps, also includes Andreas Olsson, now a post-doctoral fellow at Columbia University’s Department of Psychology, and Katherine Nearing from NYU’s School of Medicine.

Previous research has shown how people develop fears after first-hand experience of an aversive event—getting stung by a bee or being burned by a hot pan. In acquiring these fears, a process known as fear conditioning, the brain’s amygdala plays a critical role. However, it’s unclear if fear conditioning can occur indirectly—that is, through social observation with no personal experience. It is also uncertain what neural processes take place in the acquisition of fears stemming from events or circumstances not experienced first-hand.

In this study, subjects witnessed a short video of another individual participating in a fear-conditioning experiment. In the video, subjects saw another person responding with distress when receiving mild electric shocks paired with a colored square. The subjects watching the video were then told they would take part in an experiment similar to the one they just viewed. Unlike the experiment in the video, these subjects never received shocks.

The results showed that the participants had a robust fear response when they were presented with the colored square that predicted electric shocks in the video, indicating that such a response resulted from merely observing—rather than directly experiencing—an aversive event. In addition, using brain imaging techniques, the researchers found that the amydgala response was equivalent with both when watching others receive a shock and when presented with the colored square that was previously paired with shock in the video. This finding demonstrates that similar neural systems are engaged when fears are learned through first-hand experience or by merely observing others.

“In our daily lives, we are frequently exposed to vivid images of others in emotional situations through personal social interactions as well as the media,” explained Phelps. “The knowledge of somebody else’s emotional state may evoke empathic responses. However, as our results reveal, when others’ emotions are accompanied with vivid expressions and perceived as potentially relevant to our own future well being, we may engage additional learning mechanisms.”

Olsson added: “In a way, learning by observing others’ emotional responses is like exploiting their expertise without being directly exposed to the potential risks associated with the direct learning. This seems a very adaptive thing to do for most social animals, which could explain why it is commonly seen across species. However, it remains to be explored in what way uniquely human social abilities contribute to learning fears through social observation.”

James Devitt | alfa
Further information:
http://www.oxfordjournals.org/our_journals/scan/press_releases/mar07.pdf

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>