Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain imaging study shows fears learned by observing others are similar to those learned from direct experience

Humans acquire fears using similar neural processes whether they’ve personally experienced an aversive event or only witnessed it, according to a study by researchers at New York University’s Departments of Psychology.

This is the first study examining the brain basis of fears acquired indirectly, through the observation of others. The study shows that the amygdala, which is known to be critical to the acquisition and expression of fears from personal experience, is also involved during the acquisition and expression of fears obtained indirectly through social observation. The findings appear in the most recent issue of the journal Social Cognitive and Affective Neuroscience (SCAN).

The research team, from the laboratory of NYU Professor Elizabeth Phelps, also includes Andreas Olsson, now a post-doctoral fellow at Columbia University’s Department of Psychology, and Katherine Nearing from NYU’s School of Medicine.

Previous research has shown how people develop fears after first-hand experience of an aversive event—getting stung by a bee or being burned by a hot pan. In acquiring these fears, a process known as fear conditioning, the brain’s amygdala plays a critical role. However, it’s unclear if fear conditioning can occur indirectly—that is, through social observation with no personal experience. It is also uncertain what neural processes take place in the acquisition of fears stemming from events or circumstances not experienced first-hand.

In this study, subjects witnessed a short video of another individual participating in a fear-conditioning experiment. In the video, subjects saw another person responding with distress when receiving mild electric shocks paired with a colored square. The subjects watching the video were then told they would take part in an experiment similar to the one they just viewed. Unlike the experiment in the video, these subjects never received shocks.

The results showed that the participants had a robust fear response when they were presented with the colored square that predicted electric shocks in the video, indicating that such a response resulted from merely observing—rather than directly experiencing—an aversive event. In addition, using brain imaging techniques, the researchers found that the amydgala response was equivalent with both when watching others receive a shock and when presented with the colored square that was previously paired with shock in the video. This finding demonstrates that similar neural systems are engaged when fears are learned through first-hand experience or by merely observing others.

“In our daily lives, we are frequently exposed to vivid images of others in emotional situations through personal social interactions as well as the media,” explained Phelps. “The knowledge of somebody else’s emotional state may evoke empathic responses. However, as our results reveal, when others’ emotions are accompanied with vivid expressions and perceived as potentially relevant to our own future well being, we may engage additional learning mechanisms.”

Olsson added: “In a way, learning by observing others’ emotional responses is like exploiting their expertise without being directly exposed to the potential risks associated with the direct learning. This seems a very adaptive thing to do for most social animals, which could explain why it is commonly seen across species. However, it remains to be explored in what way uniquely human social abilities contribute to learning fears through social observation.”

James Devitt | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>