Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain imaging study shows fears learned by observing others are similar to those learned from direct experience

16.03.2007
Humans acquire fears using similar neural processes whether they’ve personally experienced an aversive event or only witnessed it, according to a study by researchers at New York University’s Departments of Psychology.

This is the first study examining the brain basis of fears acquired indirectly, through the observation of others. The study shows that the amygdala, which is known to be critical to the acquisition and expression of fears from personal experience, is also involved during the acquisition and expression of fears obtained indirectly through social observation. The findings appear in the most recent issue of the journal Social Cognitive and Affective Neuroscience (SCAN).

The research team, from the laboratory of NYU Professor Elizabeth Phelps, also includes Andreas Olsson, now a post-doctoral fellow at Columbia University’s Department of Psychology, and Katherine Nearing from NYU’s School of Medicine.

Previous research has shown how people develop fears after first-hand experience of an aversive event—getting stung by a bee or being burned by a hot pan. In acquiring these fears, a process known as fear conditioning, the brain’s amygdala plays a critical role. However, it’s unclear if fear conditioning can occur indirectly—that is, through social observation with no personal experience. It is also uncertain what neural processes take place in the acquisition of fears stemming from events or circumstances not experienced first-hand.

In this study, subjects witnessed a short video of another individual participating in a fear-conditioning experiment. In the video, subjects saw another person responding with distress when receiving mild electric shocks paired with a colored square. The subjects watching the video were then told they would take part in an experiment similar to the one they just viewed. Unlike the experiment in the video, these subjects never received shocks.

The results showed that the participants had a robust fear response when they were presented with the colored square that predicted electric shocks in the video, indicating that such a response resulted from merely observing—rather than directly experiencing—an aversive event. In addition, using brain imaging techniques, the researchers found that the amydgala response was equivalent with both when watching others receive a shock and when presented with the colored square that was previously paired with shock in the video. This finding demonstrates that similar neural systems are engaged when fears are learned through first-hand experience or by merely observing others.

“In our daily lives, we are frequently exposed to vivid images of others in emotional situations through personal social interactions as well as the media,” explained Phelps. “The knowledge of somebody else’s emotional state may evoke empathic responses. However, as our results reveal, when others’ emotions are accompanied with vivid expressions and perceived as potentially relevant to our own future well being, we may engage additional learning mechanisms.”

Olsson added: “In a way, learning by observing others’ emotional responses is like exploiting their expertise without being directly exposed to the potential risks associated with the direct learning. This seems a very adaptive thing to do for most social animals, which could explain why it is commonly seen across species. However, it remains to be explored in what way uniquely human social abilities contribute to learning fears through social observation.”

James Devitt | alfa
Further information:
http://www.oxfordjournals.org/our_journals/scan/press_releases/mar07.pdf

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>