Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infection detectives use disease 'fingerprints' to track common infections in children

15.03.2007
Infectious disease specialists at UT Southwestern Medical Center have found a new method for identifying suspect viruses and bacteria that cause some of the most common acute infections in children.

Traditionally, researchers have looked for clues to an infection by tracking down the virus or bacteria causing it. But that doesn’t always work because the bacteria or virus may not be present in the blood or other easily accessible area.

Researchers at UT Southwestern, Children’s Medical Center Dallas and Baylor Institute for Immunology Research came up with a different approach – analyzing the telltale "fingerprints" a disease leaves behind on cells involved in the immune response, and using that information to get a composite sketch of the infectious agent.

"We are genetically programmed to respond differently to different infections. We have developed the tools to understand that," said Dr. Octavio Ramilo, professor of pediatrics at UT Southwestern and lead author of a study appearing in the March edition of the journal Blood.

"Infectious diseases are the No.1 cause of death in the world. So we hope this eventually can be used not only to diagnose, but also to understand the prognosis and how the body is responding to therapy," he said.

Different viruses and bacteria trigger the activation of very specific genes that code for proteins called receptors in leukocytes, the white blood cells th at help the body fight infections. Researchers surmised that if they looked at the leukocytes, they could detect the specific pattern of receptors – similar to a disease "fingerprint" – and be able to identify which infection was present. The process to identify such biosignatures is called gene expression profiling, and it’s done using microarray analysis.

Researchers extracted genetic material called RNA from a drop of blood and placed it on a special gene chip called a microarray, which contains probes for the whole human genome and measures which genes are turned on or off.

In this study, researchers analyzed gene expression patterns in leukocytes from 29 children at Children’s known to have one of four common infections: flu (influenza A); staph (Staphylococcus aureus); strep (Streptococcus pneumoniae); or E. coli (Escherichia coli).

They analyzed 35 genes that help distinguish infections and identified infectious agents with better-than-average success rates. Doctors were able to distinguish between the influenza, E. coli and strep infections in 95 percent of cases. A different set of genes distinguished E. coli from staph infections with 85 percent accuracy. Further investigation demonstrated clear distinction between viral and bacterial pneumonias.

The next step will be to study whether the microarray analysis can be applied in a more challenging clinical setting, such as an emergency room.

"When a child comes in with a fever to the ER, we want to see if we can predict who just has a virus and can go home, and who has to be admitted and put into the intensive care unit and treated with antibiotics. That’s our goal," said Dr. Ramilo. "This is just the first step. But it establishes a basis for us to do that."

While pediatricians couldn’t perform the analysis in their offices, researchers are already thinking about a possible way they could send in the results from the chip and get the analysis back via the Internet, for example.

"Pediatricians understand that this could change the way we do things," said Dr. Ramilo, who leads pediatric infectious disease research at UT Southwestern and Children’s.

It could also prove useful for identifying previously unknown illnesses or biological weapons.

"Even if we don’t know which pathogen it is, we still can tell which family or which group it’s in, so if someone engineers a virus that has never been seen, we will have hints that it’s close to something that is known," he said.

Further studies may eventually help doctors track the progression of disease and help assess risks of complications, Dr. Ramilo said.

Russell Rian | EurekAlert!
Further information:
http://www.utsouthwestern.edu/home/news/index.html

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>