Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-activated compound silences nerves, may one day help epileptics

08.03.2007
Brain activity has been compared to a light bulb turning on in the head. Scientists at Washington University School of Medicine in St. Louis have reversed this notion, creating a drug that stops brain activity when a light shines on it.

The unexpected result, reported online in Nature Neuroscience, turned several lights on in researchers' heads.

"This is daydreaming at this point, but we might one day combine this drug with a small implanted light to stop seizures," says senior author Steven Mennerick, Ph.D. associate professor of psychiatry and of anatomy and neurobiology. "Some current experimental epilepsy treatments involve the implanting of an electrode, so why not a light?"

The new compound activates the same receptor used by many anesthetics and tranquilizers, making it harder for a brain cell to respond to stimulation. Mennerick and colleagues including lead author Larry Eisenman, M.D., Ph.D., assistant professor of neurology, tested the drug on cells in culture set up to behave like they were involved in a seizure, with the cells rapidly and repeatedly firing. When they added the new drug and shone a light on the cells, the seizure-like firing pattern calmed.

If the drug is adapted for epilepsy, Mennerick notes, it is most likely to help in cases where seizures consistently originate from the same brain region. Theoretically, doctors could keep a patient on regular doses of the new drug and implant a small fiber optic light in the dysfunctional region. The light would activate the drug only when seizure-like firing patterns started to appear.

Scientists in the laboratory of Douglas F. Covey, Ph.D., professor of molecular biology and pharmacology, created the drug by linking a steroid known to have anesthetic effects with a molecule, known as NBD, that fluoresces in response to blue light. Mennerick and colleagues were hoping to use the new compound, which they call the NBD-steroid, to trace the steroid's path in the nervous system.

To their initial disappointment, the researchers found that adding the fluorescent tag to the steroid had disabled it.

"Normally, the steroid keeps the cell quiet in the face of stimuli that would otherwise cause it to fire," Mennerick says. "That's why drugs like barbiturates and Valium, which act on the same receptor as the steroid, are sedatives—they quiet the nerve system down."

When dosed with NBD-steroid, nerve cells still responded to stimuli as readily as they had prior to exposure. Just to see where the modified steroid was going, though, researchers exposed the cells to light.

"All of a sudden, the response to the steroid was back, and the nerve cells were more reluctant to react to stimuli," Mennerick says. "And we knew we had found something very interesting."

To confirm what was happening, scientists dosed two of a nerve cell's many different branches with NBD-steroid. When they shone a light on one of the branches, its readiness to respond decreased, while the readiness of the branch not exposed to light remained the same.

Department of Anesthesiology colleagues tested the compound's effects on tadpoles.

"Tadpoles rapidly take up drugs through their skin, so they're frequently used to test potential anesthetics," Mennerick notes. "And of course, given that it's a photoactive drug, they make a nice test subject because they're mostly translucent."

Tadpoles swimming in a solution of NBD-steroid went to sleep at the bottom of their beaker when exposed to light.

Mennerick and his colleagues are currently seeking to identify or create an animal model of epilepsy that lets them test the NBD-steroid's potential as a therapeutic.

They are also looking for a new fluorescent tag that responds to longer wavelengths of light. Unlike many photoactive compounds, the NBD-steroid responds not to ultraviolet light but to light from the blue region of the electromagnetic spectrum. This helps because the longer wavelengths of blue light penetrate farther into tissue than ultraviolet light and are less damaging to it. Molecules that fluoresce in response to even longer wavelengths of light are available, and scientists are testing whether any of them can create the same effect when bound to the steroid.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>