Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tests to reveal levels of depleted uranium in army personnel

06.03.2007
A test recently used by the UK government’s Independent Depleted Uranium Oversight Board to detect exposure to UK troops by depleted uranium (DU) during the 1991 Gulf Conflict was developed by a team led by a University of Leicester geologist.

Randall Parrish, Professor of Isotope Geology, developed the test with Postdoctoral Fellow Dr Axel Gerdes, who now works at the University of Frankfurt, Germany, and his colleague Matt Horstwood at the British Geological Survey, using advanced mass spectrometry.

Prof Parrish’s team has tested more than 350 individuals as part of the programme, with the result that none so far tested had any demonstrable DU exposure resulting from their participation in the 1991 Gulf Conflict, though the extent of actual initial exposure of tested individuals to DU is unknown.

Depleted uranium (DU) is a by-product from the manufacture of enriched uranium, used for fuel in nuclear reactors or in weapons. It is 60 per cent as radioactive as natural uranium.

Because of its hardness, it has been used in engineering projects, as well as in the construction of military tanks and anti-tank weapons, such as those used in the 1991 Gulf War, in Bosnia in 1994-5, Kosovo in 1999 and in the latest conflict in Iraq.

While DU weapons can reduce casualties amongst the forces using them, there may be long-term risks to the health of those exposed to them, either through shrapnel wounds or inhalation, and risks, also, to the environment.

The test was designed to detect after 15 years even a modest exposure to DU, on the basis of accepted knowledge about the retention and solubility of DU in the human body. The test is applicable even to those who excrete extremely low levels of uranium in urine.

Professor Parrish’s and his colleagues’ work, undertaken to help in the planning of the UK DU testing programme, explored the sensitivity and accuracy of urine tests to measure uranium concentrations and isotope ratios.

The testing programme was set up in 2001, to investigate concerns amongst UK Service personnel from the Balkans and the 1991 Gulf War, following media coverage about Depleted Uranium.

Professor Parrish commented: “Dr Gerdes and I continue to collaborate on this test, which is by far the most sensitive and accurate of all uranium isotope test for urine worldwide. It uses multiple isotopes to ascertain the extent of contamination.

“Our facility has used this test in the monitoring of more than 400 UK veterans of the 1991 Gulf War, under the testing programme administered by the Depleted Uranium Oversight Board over the past two and a half years – a testing programme that is nearly finished.”

Alex Jelley | alfa
Further information:
http://www.le.ac.uk
http://www.duob.org.uk/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>