Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare cell prevents rampant brain activity

02.03.2007
One of the mysteries of the brain is how it avoids ending up in a state of chaos, something which happens only on exceptional occasions, when it can lead to epileptic fits. Scientists at Karolinska Institutet have now uncovered a new mechanism controlling how the brain keeps its neuronal activity in check.

The human brain consists of around a hundred million nerve cells linked together by around ten billion contact junctions called synapses. The activity of this extremely complex network is regulated through a dynamic balance between excitatory signals, which are transmitted by one type of synapse, and inhibitory counter-signals, which are transmitted by another.

An imbalance between excitatory and inhibitory activity is associated with diseases such as epilepsy, schizophrenia, and anxiety. But despite the fact that excitatory synapses are much more common than their inhibitory counterparts, the system is generally kept in a state of equilibrium. Just how the brain manages this feat is a puzzle to scientists.

Scientists at Karolinska Institutet and the Brain Mind Institute in Switzerland have now discovered a mechanism that might explain how the most common type of neuron in the cerebral cortex – the pyramid cell – is prevented from becoming over-activated. Their results show that a rarer cell type that links collections of pyramid cells – called a Martinotti cell –

acts as a kind of safety device. When a Martinotti cell receives signals above a certain frequency, it responds by sending back inhibitory signals that moderate surrounding pyramid cells.

Gilad Silberberg, one of the researchers behind the study, believes that the mechanism is essential to understanding brain disorders like epilepsy.

“A characteristic feature of epilepsy is the hyperactivation of cortical pyramid cells, which is exactly what this mechanism inhibits. It is possible that epilepsy is related to a deficit of Martinotti cells or a deficiency of Martinotti activity in the brain.”

Katarina Sternudd | alfa
Further information:
http://www.ki.se

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>