Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UD technology removes viruses from drinking water

01.03.2007
University of Delaware researchers have developed an inexpensive, nonchlorine-based technology that can remove harmful microorganisms, including viruses, from drinking water.

UD's patented technology, developed jointly by researchers in the College of Agriculture and Natural Resources and the College of Engineering, incorporates highly reactive iron in the filtering process to deliver a chemical “knock-out punch” to a host of notorious pathogens, from E. coli to rotavirus.

The new technology could dramatically improve the safety of drinking water around the globe, particularly in developing countries. According to the World Health Organization (WHO), over a billion people--one-sixth of the world's population--lack access to safe water supplies.

Four billion cases of diarrheal disease occur worldwide every year, resulting in 1.8 million deaths, primarily infants and children in developing countries. Eighty-eight percent of this disease is attributed to unsafe water supplies, inadequate sanitation and hygiene.

In the United States, viruses are the target pathogenic microorganisms in the new Ground Water Rule under the Environmental Protection Agency's Safe Drinking Water Act, which took effect on Jan. 8.

“What is unique about our technology is its ability to remove viruses--the smallest of the pathogens--from water supplies,” Pei Chiu, an associate professor in UD's Department of Civil and Environmental Engineering, said.

Chiu collaborated with Yan Jin, a professor of environmental soil physics in UD's plant and soil sciences department, to develop the technology. They then sought the expertise of virologist Kali Kniel, an assistant professor in the animal and food sciences department, who has provided critical assistance with the testing phase.

“A serious challenge facing the water treatment industry is how to simultaneously control microbial pathogens, disinfectants such as chlorine, and toxic disinfection byproducts in our drinking water, and at an acceptable cost,” Chiu noted.

Viruses are difficult to eliminate in drinking water using current methods because they are far smaller than bacteria, highly mobile, and resistant to chlorination, which is the dominant disinfection method used in the United States, according to the researchers.

Of all the inhabitants of the microbial world, viruses are the smallest--as tiny as 10 nanometers. According to the American Society for Microbiology, if a virus could be enlarged to the size of a baseball, the average bacterium would be the size of the pitcher's mound, and a single cell in your body would be the size of a ballpark.

“By using elemental iron in the filtration process, we were able to remove viral agents from drinking water at very high efficiencies. Of a quarter of a million particles going in, only a few were going out,” Chiu noted.

The elemental or “zero-valent” iron (Fe) used in the technology is widely available as a byproduct of iron and steel production, and it is inexpensive, currently costing less than 40 cents a pound (~$750/ton). Viruses are either chemically inactivated by or irreversibly adsorbed to the iron, according to the scientists.

Technology removes 99.999 percent of viruses

The idea for the UD research sprang up when Jin and Chiu were discussing their respective projects over lunch one day.

Since joining UD in 1995, Jin's primary research area has been investigating the survival, attachment and transport behavior of viruses in soil and groundwater aquifers. One of the projects, which was sponsored by the American Water Works Association Research Foundation, involved testing virus transport potential in soils collected from different regions across the United States. Jin's group found that the soils high in iron and aluminum oxides removed viruses much more efficiently than those that didn't contain metal oxides.

“We knew that iron had been used to treat a variety of pollutants in groundwater, but no one had tested iron against biological agents,” Chiu said. So the two researchers decided to pursue some experiments.

With partial support from the U.S. Department of Agriculture and the Delaware Water Resources Center, through its graduate fellowship program, the scientists and their students began evaluating the effectiveness of iron granules in removing viruses from water under continuous flow conditions and over extended periods. Two bacteriophages--viruses that infect bacteria--were used in the initial lab studies.

Kali Kniel, a virologist at UD, has provided critical expertise in documenting the UD technology's effectiveness in removing pathogens such as rotavirus, shown in the magnified view at right. Rotavirus is the number-one cause of diarrhea in children.

Since then, Kniel has been documenting the technology's effectiveness against human pathogens including E. coli 0157:H7, hepatitis A, norovirus and rotavirus. Rotavirus is the number-one cause of diarrhea in children, according to Kniel.

“In 20 minutes, we found 99.99 percent removal of the viruses,” Chiu said. “And we found that removal of the viruses got even better than that with time, to more than 99.999 percent.”

The elemental iron also removed organic material, such as humic acid, that naturally occurs in groundwater and other sources of drinking water. During the disinfection process, this natural organic material can react with chlorine to produce a variety of toxic chemicals called disinfection byproducts.

“Our iron-based technology can help ensure drinking-water safety by reducing microbial pathogens and disinfection byproducts simultaneously,” Chiu noted.

Applications in agriculture and food safety

Besides helping to safeguard drinking water, the UD technology may have applications in agriculture.

Integrated into the wash-water system at a produce-packing house, it could help clean and safeguard fresh and “ready to eat” vegetables, particularly leafy greens like lettuce and spinach, as well as fruit, according to Kniel.

“Sometimes on farms, wash-water is recirculated, so this technology could help prevent plant pathogens from spreading to other plants,” she said.

This UD research underscores the importance of interdisciplinary study in solving problems.

“There are lots of exciting things you can discover working together,” Jin said, smiling. “In this project, we all need each other. Pei is the engineer and knows where we should put this step and how to scale it up. I study how viruses and other types of colloidal particles are transported in water, and Kali knows all about waterborne pathogens.

“Our hope is that the technology we've developed will help people in our country and around the world, especially in developing countries,” Jin noted.

Currently, the Centre for Affordable Water and Sanitation Technology in Calgary, Canada, is exploring use of the UD technology in a portable water treatment unit. Since 2001, the registered Canadian charity has provided technical training in water and sanitation to more than 300 organizations in 43 countries of the developing world, impacting nearly a million people.

The University of Delaware is pursuing commercialization opportunities for the research. Patents have been filed in the United States, Canada, France, Germany and Switzerland. For more information, contact Bruce Morrissey, UD director of technology development, Office of the Vice Provost for Research and Graduate Studies, at [brucem@udel.edu] or (302) 831-4230.

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>