Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UD technology removes viruses from drinking water

01.03.2007
University of Delaware researchers have developed an inexpensive, nonchlorine-based technology that can remove harmful microorganisms, including viruses, from drinking water.

UD's patented technology, developed jointly by researchers in the College of Agriculture and Natural Resources and the College of Engineering, incorporates highly reactive iron in the filtering process to deliver a chemical “knock-out punch” to a host of notorious pathogens, from E. coli to rotavirus.

The new technology could dramatically improve the safety of drinking water around the globe, particularly in developing countries. According to the World Health Organization (WHO), over a billion people--one-sixth of the world's population--lack access to safe water supplies.

Four billion cases of diarrheal disease occur worldwide every year, resulting in 1.8 million deaths, primarily infants and children in developing countries. Eighty-eight percent of this disease is attributed to unsafe water supplies, inadequate sanitation and hygiene.

In the United States, viruses are the target pathogenic microorganisms in the new Ground Water Rule under the Environmental Protection Agency's Safe Drinking Water Act, which took effect on Jan. 8.

“What is unique about our technology is its ability to remove viruses--the smallest of the pathogens--from water supplies,” Pei Chiu, an associate professor in UD's Department of Civil and Environmental Engineering, said.

Chiu collaborated with Yan Jin, a professor of environmental soil physics in UD's plant and soil sciences department, to develop the technology. They then sought the expertise of virologist Kali Kniel, an assistant professor in the animal and food sciences department, who has provided critical assistance with the testing phase.

“A serious challenge facing the water treatment industry is how to simultaneously control microbial pathogens, disinfectants such as chlorine, and toxic disinfection byproducts in our drinking water, and at an acceptable cost,” Chiu noted.

Viruses are difficult to eliminate in drinking water using current methods because they are far smaller than bacteria, highly mobile, and resistant to chlorination, which is the dominant disinfection method used in the United States, according to the researchers.

Of all the inhabitants of the microbial world, viruses are the smallest--as tiny as 10 nanometers. According to the American Society for Microbiology, if a virus could be enlarged to the size of a baseball, the average bacterium would be the size of the pitcher's mound, and a single cell in your body would be the size of a ballpark.

“By using elemental iron in the filtration process, we were able to remove viral agents from drinking water at very high efficiencies. Of a quarter of a million particles going in, only a few were going out,” Chiu noted.

The elemental or “zero-valent” iron (Fe) used in the technology is widely available as a byproduct of iron and steel production, and it is inexpensive, currently costing less than 40 cents a pound (~$750/ton). Viruses are either chemically inactivated by or irreversibly adsorbed to the iron, according to the scientists.

Technology removes 99.999 percent of viruses

The idea for the UD research sprang up when Jin and Chiu were discussing their respective projects over lunch one day.

Since joining UD in 1995, Jin's primary research area has been investigating the survival, attachment and transport behavior of viruses in soil and groundwater aquifers. One of the projects, which was sponsored by the American Water Works Association Research Foundation, involved testing virus transport potential in soils collected from different regions across the United States. Jin's group found that the soils high in iron and aluminum oxides removed viruses much more efficiently than those that didn't contain metal oxides.

“We knew that iron had been used to treat a variety of pollutants in groundwater, but no one had tested iron against biological agents,” Chiu said. So the two researchers decided to pursue some experiments.

With partial support from the U.S. Department of Agriculture and the Delaware Water Resources Center, through its graduate fellowship program, the scientists and their students began evaluating the effectiveness of iron granules in removing viruses from water under continuous flow conditions and over extended periods. Two bacteriophages--viruses that infect bacteria--were used in the initial lab studies.

Kali Kniel, a virologist at UD, has provided critical expertise in documenting the UD technology's effectiveness in removing pathogens such as rotavirus, shown in the magnified view at right. Rotavirus is the number-one cause of diarrhea in children.

Since then, Kniel has been documenting the technology's effectiveness against human pathogens including E. coli 0157:H7, hepatitis A, norovirus and rotavirus. Rotavirus is the number-one cause of diarrhea in children, according to Kniel.

“In 20 minutes, we found 99.99 percent removal of the viruses,” Chiu said. “And we found that removal of the viruses got even better than that with time, to more than 99.999 percent.”

The elemental iron also removed organic material, such as humic acid, that naturally occurs in groundwater and other sources of drinking water. During the disinfection process, this natural organic material can react with chlorine to produce a variety of toxic chemicals called disinfection byproducts.

“Our iron-based technology can help ensure drinking-water safety by reducing microbial pathogens and disinfection byproducts simultaneously,” Chiu noted.

Applications in agriculture and food safety

Besides helping to safeguard drinking water, the UD technology may have applications in agriculture.

Integrated into the wash-water system at a produce-packing house, it could help clean and safeguard fresh and “ready to eat” vegetables, particularly leafy greens like lettuce and spinach, as well as fruit, according to Kniel.

“Sometimes on farms, wash-water is recirculated, so this technology could help prevent plant pathogens from spreading to other plants,” she said.

This UD research underscores the importance of interdisciplinary study in solving problems.

“There are lots of exciting things you can discover working together,” Jin said, smiling. “In this project, we all need each other. Pei is the engineer and knows where we should put this step and how to scale it up. I study how viruses and other types of colloidal particles are transported in water, and Kali knows all about waterborne pathogens.

“Our hope is that the technology we've developed will help people in our country and around the world, especially in developing countries,” Jin noted.

Currently, the Centre for Affordable Water and Sanitation Technology in Calgary, Canada, is exploring use of the UD technology in a portable water treatment unit. Since 2001, the registered Canadian charity has provided technical training in water and sanitation to more than 300 organizations in 43 countries of the developing world, impacting nearly a million people.

The University of Delaware is pursuing commercialization opportunities for the research. Patents have been filed in the United States, Canada, France, Germany and Switzerland. For more information, contact Bruce Morrissey, UD director of technology development, Office of the Vice Provost for Research and Graduate Studies, at [brucem@udel.edu] or (302) 831-4230.

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>